日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)有極值,且導函數(shù)的極值點是的零點,給出命題:①;②若,則存在,使得;③若有兩個極值點,,則;④若,且是曲線,的一條切線,則的取值范圍是;則以上命題正確序號是______.

          【答案】①②④

          【解析】

          由函數(shù)有極值,求得的范圍,同時有導函數(shù)的極值點是的零點求得的關(guān)系,判斷四個命題的真假,其中①由剛才的關(guān)系式就可判斷,②用導數(shù)研究函數(shù)的單調(diào)性,結(jié)合零點存在定理可得,③可舉反例說明,④用已知得出單調(diào)性,化簡函數(shù),利用導數(shù)的幾何意義求出的表達式,從而求得其取值范圍.

          由題意,,即

          ,則,由,由是一次函數(shù)知的極值點(本題是極小值點),即為的極值點,

          所以,即

          ,①正確;

          ②顯然時,

          的兩解為,即為的兩個極值點,則,中有一個小于1,一個大于1,不妨設,是極大值,而,若,則,上在一個零點,當時,上單調(diào)遞增,,因此上有零點

          所以.②正確;

          ③若,則極值為0和2,,③錯誤;

          ④由,知②中,因此上遞增,,

          ,設切點為,

          ,即,整理得,

          ,因為,所以,又,解得

          ,

          由上知是增函數(shù),所以當時,.④正確.

          故答案為:①②④.

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】在平面直角坐標系中,直線l的參數(shù)方程為(t為參數(shù),0).以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為

          (Ⅰ)寫出曲線C的直角坐標方程;

          (Ⅱ)若直線l與曲線C交于A,B兩點,且AB的長度為2,求直線l的普通方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,四棱錐的底面是菱形,平面底面,分別是,的中點,,.

          1)求證:;

          2)求直線與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】隨著網(wǎng)絡的發(fā)展,網(wǎng)上購物越來越受到人們的喜愛,各大購物網(wǎng)站為增加收入,促銷策略越來越多樣化,促銷費用也不斷增加.下表是某購物網(wǎng)站20181月~8月促銷費用(萬元)和產(chǎn)品銷量(萬件)的具體數(shù)據(jù).

          月份

          1

          2

          3

          4

          5

          6

          7

          8

          促銷費用

          2

          3

          6

          10

          13

          21

          15

          18

          產(chǎn)品銷量

          1

          1

          2

          3

          3.5

          5

          4

          4.5

          1)根據(jù)數(shù)據(jù)可知具有線性相關(guān)關(guān)系,請建立的回歸方程(系數(shù)精確到0.01);

          2)已知6月份該購物網(wǎng)站為慶祝成立1周年,特制定獎勵制度:以(單位:件)表示日銷量,,則每位員工每日獎勵100元;,則每位員工每日獎勵150元,,則每位員工每日獎勵200.現(xiàn)已知該網(wǎng)站6月份日銷量服從正態(tài)分布,請你計算某位員工當月獎勵金額總數(shù)大約多少元(當月獎勵金額總數(shù)精確到百分位).

          參考數(shù)據(jù):,,其中,分別為第個月的促銷費用和產(chǎn)品銷量,.

          參考公式:①對于一組數(shù)據(jù),,其回歸方程的斜率和截距的最小二乘估計分別為;②若隨機變量服從正態(tài)分布,則.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,是拋物線的焦點,過點且與坐標軸不垂直的直線交拋物線于、兩點,交拋物線的準線于點,其中,.過點軸的垂線交拋物線于點,直線交拋物線于點.

          1)求的值;

          2)求四邊形的面積的最小值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓的焦距為2,過點.

          1)求橢圓的標準方程;

          2)設橢圓的右焦點為F,定點,過點F且斜率不為零的直線l與橢圓交于AB兩點,以線段AP為直徑的圓與直線的另一個交點為Q,證明:直線BQ恒過一定點,并求出該定點的坐標.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在四棱錐中,底面為正方形,平面,上異于的點.

          1)求證:平面平面;

          2)當與平面所成角為時,求的長;

          3)當時,求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓的離心率,且圓過橢圓的上,下頂點.

          1)求橢圓的方程.

          2)若直線的斜率為,且直線交橢圓兩點,點關(guān)于點的對稱點為,點是橢圓上一點,判斷直線的斜率之和是否為定值,如果是,請求出此定值:如果不是,請說明理.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù).

          1)當時,試討論函數(shù)的單調(diào)性,并求出函數(shù)的極值;

          2)若恒成立,求的最大值.

          查看答案和解析>>

          同步練習冊答案