日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,圓

          (Ⅰ)若圓軸相切,求圓的方程;
          (Ⅱ)已知,圓C與軸相交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)).過點(diǎn)任作一條直線與圓相交于兩點(diǎn).問:是否存在實(shí)數(shù),使得?若存在,求出實(shí)數(shù)的值,若不存在,請說明理由.

          (Ⅰ);(Ⅱ)存在,使得.

          解析試題分析:(Ⅰ)由圓軸相切,可知圓心的縱坐標(biāo)的絕對值與半徑相等.故先將圓的方程化成標(biāo)準(zhǔn)方程為:,由求得.即可得到所求圓的方程為:;(Ⅱ)先解出兩點(diǎn)的坐標(biāo),要使得,則可以得到:,若設(shè),那么有:,結(jié)合直線與圓的方程去探討可得存在,使得.
          試題解析:(Ⅰ)圓化成標(biāo)準(zhǔn)方程為:
          ,
          若圓軸相切,那么有:
          ,解得,故所求圓的方程為:.
          (Ⅱ)令,得,

          所以
          假設(shè)存在實(shí)數(shù),
          當(dāng)直線AB與軸不垂直時(shí),設(shè)直線AB的方程為,
          代入得,,
          設(shè)從而
          因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/1d/b/9wizy.png" style="vertical-align:middle;" />



          因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/c9/5/1phyj2.png" style="vertical-align:middle;" />,所以,即,得
          當(dāng)直線AB與軸垂直時(shí),也成立.
          故存在,使得
          考點(diǎn):直線與圓的位置關(guān)系.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知點(diǎn)A(-3,0),B(3,0),動(dòng)點(diǎn)P滿足|PA|=2|PB|.
          (1)若點(diǎn)P的軌跡為曲線C,求此曲線的方程;
          (2)若點(diǎn)Q在直線l1xy+3=0上,直線l2經(jīng)過點(diǎn)Q且與曲線C只有一個(gè)公共點(diǎn)M,求|QM|的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,已知是橢圓的右焦點(diǎn);圓軸交于兩點(diǎn),其中是橢圓的左焦點(diǎn).

          (1)求橢圓的離心率;
          (2)設(shè)圓軸的正半軸的交點(diǎn)為,點(diǎn)是點(diǎn)關(guān)于軸的對稱點(diǎn),試判斷直線與圓的位置關(guān)系;
          (3)設(shè)直線與圓交于另一點(diǎn),若的面積為,求橢圓的標(biāo)準(zhǔn)方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          求經(jīng)過三點(diǎn)A(1,-1),B(1,4),C(4,-2)的圓的方程,并判斷與圓的位置關(guān)系。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          在平面直角坐標(biāo)系中,已知圓和直線,上一動(dòng)點(diǎn),,為圓軸的兩個(gè)交點(diǎn),直線,與圓的另一個(gè)交點(diǎn)分別為
          (1)若點(diǎn)的坐標(biāo)為(4,2),求直線方程;
          (2)求證直線過定點(diǎn),并求出此定點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,在平面直角坐標(biāo)系中,點(diǎn),直線。設(shè)圓的半徑為,圓心在上。

          (1)若圓心也在直線上,過點(diǎn)作圓的切線,求切線的方程;
          (2)若圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          求與圓外切于點(diǎn),且半徑為的圓的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知圓,
          (Ⅰ)若直線過定點(diǎn) (1,0),且與圓相切,求的方程;
          (Ⅱ) 若圓的半徑為3,圓心在直線上,且與圓外切,求圓的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知點(diǎn)是圓上的動(dòng)點(diǎn),
          (1)求的取值范圍;
          (2)若恒成立,求實(shí)數(shù)的取值范圍

          查看答案和解析>>

          同步練習(xí)冊答案