【題目】如圖,四棱錐中,底面
是菱形,
.
(1)證明:平面平面
;
(2)若,
,
,求二面角
的余弦值.
【答案】(1)見解析(2)
【解析】
(1)通過菱形的性質(zhì)證得,通過等腰三角形的性質(zhì)證得
,由此證得
平面
,從而證得平面
平面
.
(2)方法一通過幾何法作出二面角的平面角,解三角形求得二面角的余弦值.方法而通過建立空間直角坐標(biāo)系,利用平面
和平面
的法向量,計(jì)算出二面角的余弦值.
(1)證明:記,連接
.
因?yàn)榈酌?/span>是菱形,
所以,
是
的中點(diǎn).
因?yàn)?/span>,所以
.
因?yàn)?/span>,
所以平面
.
因?yàn)?/span>平面
,所以平面
平面
.
(2)因?yàn)榈酌?/span>是菱形,
,
,
所以是等邊三角形,即
.
因?yàn)?/span>,所以
.
又,
,所以
,
即.
方法一:因?yàn)?/span>是
的中點(diǎn),所以
,
因?yàn)?/span>,所以
,
所以和
都是等腰三角形.
取中點(diǎn)
,連接
,則
,且
,
所以是二面角
的平面角.
因?yàn)?/span>,且
,
所以.
因?yàn)?/span>,
,
所以.
所以二面角的余弦值為
.
方法二:如圖,以為坐標(biāo)原點(diǎn),
所在直線分別為
軸,
軸,
軸,建立空間直角坐標(biāo)系
,
則,
,
,
,
所以,
,
.
設(shè)平面的法向量為
由,得
,
令,得
.
同理,可求平面的法向量
.
所以
.
所以,二面角的余弦值為
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(數(shù)學(xué)文卷·2017屆重慶十一中高三12月月考第16題) 現(xiàn)介紹祖暅原理求球體體積公式的做法:可構(gòu)造一個(gè)底面半徑和高都與球半徑相等的圓柱,然后在圓柱內(nèi)挖去一個(gè)以圓柱下底面圓心為頂點(diǎn),圓柱上底面為底面的圓錐,用這樣一個(gè)幾何體與半球應(yīng)用祖暅原理(圖1),即可求得球的體積公式.請研究和理解球的體積公式求法的基礎(chǔ)上,解答以下問題:已知橢圓的標(biāo)準(zhǔn)方程為 ,將此橢圓繞y軸旋轉(zhuǎn)一周后,得一橄欖狀的幾何體(圖2),其體積等于______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】軍訓(xùn)時(shí),甲、乙兩名同學(xué)進(jìn)行射擊比賽,共比賽10場,每場比賽各射擊四次,且用每場擊中環(huán)數(shù)之和作為該場比賽的成績.?dāng)?shù)學(xué)老師將甲、乙兩名同學(xué)的10場比賽成績繪成如圖所示的莖葉圖,并給出下列4個(gè)結(jié)論:(1)甲的平均成績比乙的平均成績高;(2)甲的成績的極差是29;(3)乙的成績的眾數(shù)是21;(4)乙的成績的中位數(shù)是18.則這4個(gè)結(jié)論中,正確結(jié)論的個(gè)數(shù)為( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著西部大開發(fā)的深入,西南地區(qū)的大學(xué)越來越受到廣大考生的青睞,下表是西南地區(qū)某大學(xué)近五年的錄取平均分高于省一本線分值對比表:
年份 | 2015 | 2016 | 2017 | 2018 | 2019 |
年份代碼 | 1 | 2 | 3 | 4 | 5 |
錄取平均分高于省一本線分值 | 28 | 34 | 41 | 47 | 50 |
(1)根據(jù)上表數(shù)據(jù)可知,與
之間存在線性相關(guān)關(guān)系,求
關(guān)于
的線性回歸方程;
(2)假設(shè)2020年該省一本線為520分,利用(1)中求出的回歸方程預(yù)測2020年該大學(xué)錄取平均分.
參考公式:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從10種不同的作物種子中選出6種分別放入6個(gè)不同的瓶子中,每瓶不空,如果甲、乙兩種種子都不許放入第一號瓶子內(nèi),那么不同的放法共有( )
A.種B.
種C.
種D.
種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(
為自然對數(shù)的底數(shù)),
.
(1)當(dāng)時(shí),求函數(shù)
的極小值;
(2)若當(dāng)時(shí),關(guān)于
的方程
有且只有一個(gè)實(shí)數(shù)解,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)
的單調(diào)區(qū)間;
(2)若函數(shù)有零點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓:
內(nèi)一點(diǎn)
,
點(diǎn)為圓
上任意一點(diǎn),線段
的垂直平分線與線段
連線交于點(diǎn)
.
(1)求點(diǎn)的軌跡方程;
(2)設(shè)點(diǎn)的軌跡為曲線
,過點(diǎn)
的直線
與曲線
交于不同的兩點(diǎn)
、
,求
的內(nèi)切圓半徑的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠有甲,乙兩個(gè)車間生產(chǎn)同一種產(chǎn)品,,甲車間有工人人,乙車間有工人
人,為比較兩個(gè)車間工人的生產(chǎn)效率,采用分層抽樣的方法抽取工人,甲車間抽取的工人記作第一組,乙車間抽取的工人記作第二組,并對他們中每位工人生產(chǎn)完成的一件產(chǎn)品的事件(單位:
)進(jìn)行統(tǒng)計(jì),按照
進(jìn)行分組,得到下列統(tǒng)計(jì)圖.
分別估算兩個(gè)車間工人中,生產(chǎn)一件產(chǎn)品時(shí)間少于
的人數(shù)
分別估計(jì)兩個(gè)車間工人生產(chǎn)一件產(chǎn)品時(shí)間的平均值,并推測車哪個(gè)車間工人的生產(chǎn)效率更高?
從第一組生產(chǎn)時(shí)間少于
的工人中隨機(jī)抽取
人,記抽取的生產(chǎn)時(shí)間少于
的工人人數(shù)為隨機(jī)變量
,求
的分布列及數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com