【題目】已知非零復(fù)數(shù),
,
;若
,
,
滿足
,
.
(1)求的值;
(2)若所對應(yīng)點
在圓
,求
所對應(yīng)的點的軌跡;
(3)是否存在這樣的直線,
對應(yīng)點在
上,
對應(yīng)點也在直線
上?若存在,求出所有這些直線;若不存在,若不存在,說明理由.
【答案】(1);(2)
所對應(yīng)的點的軌跡是以
為圓心,以
為半徑的圓;(3)這樣的直線
存在,且有兩條
或
.
【解析】
(1)先由題意,得到,求解,即可得出結(jié)果;
(2)先由得到
,推出
代入
,得到
,進而可得出結(jié)果;
(3)先設(shè)直線存在,且為
,根據(jù)
得到
,
;再由
對應(yīng)點也在直線
上,
,推出
,得到
,求解,即可得出結(jié)果.
(1)因為,
得
,
又,所以
,
所以;
(2)由,
,得
,
即,所以
,
因為,所以
,
即,即
;
所以所對應(yīng)的點的軌跡是以
為圓心,以
為半徑的圓;
(3)設(shè)直線存在,且為
,
由得
,
;
因為對應(yīng)點也在直線
上,所以
,
即,所以
,
因此,解得
或
,
所以這樣的直線存在,且有兩條
或
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某基地蔬菜大棚采用無土栽培方式種植各類蔬菜.根據(jù)過去50周的資料顯示,該基地周光照量(小時)都在30小時以上,其中不足50小時的有5周,不低于50小時且不超過70小時的有35周,超過70小時的有10周.根據(jù)統(tǒng)計,該基地的西紅柿增加量
(千克)與使用某種液體肥料的質(zhì)量
(千克)之間的關(guān)系如圖所示.
(1)依據(jù)上圖,是否可用線性回歸模型擬合與
的關(guān)系?請計算相關(guān)系數(shù)
并加以說明(精確到0.01).(若
,則線性相關(guān)程度很高,可用線性回歸模型擬合)
(2)蔬菜大棚對光照要求較大,某光照控制儀商家為該基地提供了部分光照控制儀,但每周光照控制儀運行臺數(shù)受周光照量限制,并有如下關(guān)系:
周光照量 | |||
光照控制儀運行臺數(shù) | 3 | 2 | 1 |
若某臺光照控制儀運行,則該臺光照控制儀周利潤為3000元;若某臺光照控制儀未運行,則該臺光照控制儀周虧損1000元.以頻率作為概率,商家欲使周總利潤的均值達到最大,應(yīng)安裝光照控制儀多少臺?
附:相關(guān)系數(shù)公式,
參考數(shù)據(jù):,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】教材中指出:當(dāng)很小,
不太大時,可以用
表示
的近似值,即
(1),我們把近似值與實際值之差除以實際值的商的絕對值稱為“相對近似誤差”,一般用字母
表示,即相對近似誤差
(1)利用(1)求出的近似值,并指出其相對近似誤差(相對近似誤差保留兩位有效數(shù)字)
(2)若利用(1)式計算的近似值產(chǎn)生的相對近似誤差不超過
,求正實數(shù)
的取值范圍;
(3)若利用(1)式計算的近似值產(chǎn)生的相對近似誤差不超過
,求正整數(shù)
的最大值。(參考對數(shù)數(shù)值:
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點
,且右焦點為
.
(1)求橢圓的方程;
(2)過點的直線
與橢圓
交于
兩點,交
軸于點
.若
,求證:
為定值;
(3)在(2)的條件下,若點不在橢圓
的內(nèi)部,點
是點
關(guān)于原點
的對稱點,試求三角形
面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為坐標(biāo)原點,橢圓
:
的左、右焦點分別為
,
.過焦點且垂直于
軸的直線與橢圓
相交所得的弦長為3,直線
與橢圓
相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)是否存在直線:
與橢圓
相交于
兩點,使得
?若存在,求
的取值范圍;若不存在,請說明理由!
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從甲、乙兩班各隨機抽取10名同學(xué),下面的莖葉圖記錄了這20名同學(xué)在2018年高考語文作文題目中的成績(單位:分).已知語文作文題目滿分為60分,“分?jǐn)?shù)分,為及格;分?jǐn)?shù)
分,為高分”,若甲、乙兩班的成績的平均分都是44分,
(1)求的值;
(2)若分別從甲、乙兩班隨機各抽取1名成績?yōu)楦叻值膶W(xué)生,求抽到的學(xué)生中,甲班學(xué)生成績高于乙班學(xué)生成績的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】朱世杰是歷史上最偉大的數(shù)學(xué)家之一,他所著的《四元玉鑒》卷中“如像招數(shù)”五問中有如下問題:今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日轉(zhuǎn)多七人.”其大意為“官府陸續(xù)派遣1864人前往修筑堤壩,第一天派出64人,從第二天開始每天派出的人數(shù)比前一天多7人.”在該問題中的1864人全部派遣到位需要的天數(shù)為( )
A. 9B. 16C. 18D. 20
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,由半圓和部分拋物線
合成的曲線
稱為“羽毛球開線”,曲線
與
軸有
兩個焦點,且經(jīng)過點
(1)求的值;
(2)設(shè)為曲線
上的動點,求
的最小值;
(3)過且斜率為
的直線
與“羽毛球形線”相交于點
三點,問是否存在實數(shù)
使得
?若存在,求出
的值;若不存在,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com