日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,由半圓和部分拋物線合成的曲線稱為“羽毛球開(kāi)線”,曲線軸有兩個(gè)焦點(diǎn),且經(jīng)過(guò)點(diǎn)

          (1)的值;

          (2)設(shè)為曲線上的動(dòng)點(diǎn),求的最小值;

          (3)過(guò)且斜率為的直線羽毛球形線相交于點(diǎn)三點(diǎn),問(wèn)是否存在實(shí)數(shù)使得?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由。

          【答案】1;(2;(3)存在,且,詳見(jiàn)解析

          【解析】

          1)將代入求出,再由軸交點(diǎn)坐標(biāo),代入圓的方程,即可求出;

          2)先設(shè),得到,分別討論,和兩種情況,由拋物線與圓的方程,即可求出結(jié)果;

          3)先由題意得到的方程,與拋物線聯(lián)立,求出;與圓聯(lián)立,求出,根據(jù)得到,化簡(jiǎn)得到關(guān)于的方程,求解,即可得出結(jié)果.

          1)由題意,將代入,得到;所以拋物線;

          軸交于,所以,代入圓的方程,可得;

          所以;

          2)設(shè),因?yàn)?/span>,則,

          當(dāng)時(shí),,所以

          所以時(shí),;

          當(dāng)時(shí),,,

          所以時(shí),;

          ,所以的最小值為;

          3)由題意,可得:的方程為,

          ,整理得:,

          解得,即;

          ,整理得:

          解得:,則,

          ,可得

          ,整理得,解得(由題意,負(fù)值舍去)

          因此,存在實(shí)數(shù),使得.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某公司培訓(xùn)員工某項(xiàng)技能,培訓(xùn)有如下兩種方式:

          方式一:周一到周五每天培訓(xùn)1小時(shí),周日測(cè)試

          方式二:周六一天培訓(xùn)4小時(shí),周日測(cè)試

          公司有多個(gè)班組,每個(gè)班組60人,現(xiàn)任選兩組記為甲組、乙組先培訓(xùn);甲組選方式一,乙組選方式二,并記錄每周培訓(xùn)后測(cè)試達(dá)標(biāo)的人數(shù)如表:

          第一周

          第二周

          第三周

          第四周

          甲組

          20

          25

          10

          5

          乙組

          8

          16

          20

          16

          用方式一與方式二進(jìn)行培訓(xùn),分別估計(jì)員工受訓(xùn)的平均時(shí)間精確到,并據(jù)此判斷哪種培訓(xùn)方式效率更高?

          在甲乙兩組中,從第三周培訓(xùn)后達(dá)標(biāo)的員工中采用分層抽樣的方法抽取6人,再?gòu)倪@6人中隨機(jī)抽取2人,求這2人中至少有1人來(lái)自甲組的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知非零復(fù)數(shù),,;若,滿足,.

          1)求的值;

          2)若所對(duì)應(yīng)點(diǎn)在圓,求所對(duì)應(yīng)的點(diǎn)的軌跡;

          3)是否存在這樣的直線對(duì)應(yīng)點(diǎn)在上,對(duì)應(yīng)點(diǎn)也在直線上?若存在,求出所有這些直線;若不存在,若不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某校的1000名高三學(xué)生參加四門(mén)學(xué)科的選拔考試,每門(mén)試卷共有10道題,每題10分,規(guī)定:每門(mén)錯(cuò)題成績(jī)記為,錯(cuò)題成績(jī)記為,錯(cuò)題成績(jī)記為,錯(cuò)題成績(jī)記為,在錄取時(shí),記為90分,記為80分,記為60分,記為50分.

          根據(jù)模擬成績(jī),每一門(mén)都有如下統(tǒng)計(jì)表:

          答錯(cuò)

          題數(shù)

          0

          1

          2

          3

          4

          5

          6

          7

          8

          9

          10

          頻數(shù)

          10

          90

          100

          150

          150

          200

          100

          100

          50

          49

          1

          已知選拔性考試成績(jī)與模擬成績(jī)基本吻合.

          (1)設(shè)為高三學(xué)生一門(mén)學(xué)科的得分,求的分布列和數(shù)學(xué)期望;

          (2)預(yù)測(cè)考生4門(mén)總分為320概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某大學(xué)生參加社會(huì)實(shí)踐活動(dòng),對(duì)某公司1月份至6月份銷(xiāo)售某種配件的銷(xiāo)售量及銷(xiāo)售單價(jià)進(jìn)行了調(diào)查,銷(xiāo)售單價(jià)x和銷(xiāo)售量y之間的一組數(shù)據(jù)如下表所示:

          月份

          1

          2

          3

          4

          5

          6

          銷(xiāo)售單價(jià)(元)

          9

          9.5

          10

          10.5

          11

          8

          銷(xiāo)售量(件)

          11

          10

          8

          6

          5

          14.2

          (1)根據(jù)1至5月份的數(shù)據(jù),求出y關(guān)于x的回歸直線方程;

          (2)若由回歸直線方程得到的估計(jì)數(shù)據(jù)與剩下的檢驗(yàn)數(shù)據(jù)的誤差不超過(guò)0.5元,則認(rèn)為所得到的回歸直線方程是理想的,試問(wèn)(1)中所得到的回歸直線方程是否理想?

          (3)預(yù)計(jì)在今后的銷(xiāo)售中,銷(xiāo)售量與銷(xiāo)售單價(jià)仍然服從(1)中的關(guān)系,若該種機(jī)器配件的成本是2.5元/件,那么該配件的銷(xiāo)售單價(jià)應(yīng)定為多少元才能獲得最大利潤(rùn)?(注:利潤(rùn)=銷(xiāo)售收入-成本).

          參考公式:回歸直線方程,其中,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在四棱錐中,底面為正方形,且,其中,分別是,的中點(diǎn),動(dòng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),下列四個(gè)結(jié)論:①;;,

          其中恒成立的為(

          A. ①③ B. ③④ C. ①④ D. ②③

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖所示的幾何體中,垂直于梯形所在的平面,的中點(diǎn),,四邊形為矩形,線段于點(diǎn).

          (1)求證:平面;

          (2)求二面角的正弦值;

          (3)在線段上是否存在一點(diǎn),使得與平面所成角的大小為?若存在,求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系中,已知點(diǎn),.若圓上存在唯一點(diǎn),使得直線,軸上的截距之積為,則實(shí)數(shù)的值為______.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知是定義在上且以4為周期的奇函數(shù),當(dāng)時(shí),為自然對(duì)數(shù)的底),則函數(shù)在區(qū)間上的所有零點(diǎn)之和為( )

          A. 6B. 8C. 12D. 14

          查看答案和解析>>

          同步練習(xí)冊(cè)答案