日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知兩點M(-2,0),N(2,0),點P滿足=12,則點P的軌跡方程為(    )

          A.+y2=l         B.x2+y2=16        C.y2-x2=8        D.x2+y2=8

           

          解析:本題考查平面向量數(shù)量積的坐標運算及直譯法求動點的軌跡方程;據(jù)題意設P(x,y)則=(x+2,y)·(x-2,y)=x2+y2-4=12,整理得x2+y2=16.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          已知兩點F1(-
          2
          ,0)
          、F2(
          2
          ,0)
          ,曲線C上的動點P(x,y)滿足
          .
          PF1
          .
          PF2
          +|
          .
          PF1
          |×|
          .
          PF2
          |=2.
          (I)求曲線C的方程;
          (II)設直線l:y=kx+m(k≠0),對定點A(0,-1),是否存在實數(shù)m,使直線l與曲線C有兩個不同的交點M、N,滿足|AM|=|AN|?若存在,求出m的范圍;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知兩點M(-2,0)、N(2,0),點P為坐標平面內的動點,滿足||·||+·=0,則動點P(x,y)的軌跡方程為(  )

          A.y2=8x                                             B.y2=-8x

          C.y2=4x                                             D.y2=-4x

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知兩點M(-2,0),N(2,0),動點P在y軸上的射影為為H,||是2和的等比中項.

          (Ⅰ)求動點P的軌跡方程,并指出方程所表示的曲線;

          (Ⅱ)若以點M,N為焦點的雙曲線C過直線x+y=1上的點Q,求實軸最長的雙曲線C的方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源:同步題 題型:單選題

          已知兩點M( -2 ,0) ,N(2 ,0) ,點P 滿足,則點P的軌跡方程為    
          [     ]
          A.
          B.x2+y2=16  
          C.y2-x2=8    
          D.x2+y2=8

          查看答案和解析>>

          同步練習冊答案