日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù).

          1)若是定義域上的增函數(shù),求的取值范圍;

          2)設(shè),分別為的極大值和極小值,若,求的取值范圍.

          【答案】(1);(2

          【解析】

          1)先寫出函數(shù)的定義域,對(duì)函數(shù)求導(dǎo),是定義域上的增函數(shù),轉(zhuǎn)化為,即恒成立,從而求出的取值范圍;

          2)將表示為關(guān)于的函數(shù),由,得,設(shè)方程,即得兩根為,,且,利用韋達(dá)定理可得,由,從而得到,根據(jù)題意可得,由,將其代入上邊式子可得,之后令,則,從而有,則,利用導(dǎo)數(shù)研究函數(shù)可得結(jié)果.

          1的定義域?yàn)?/span>,

          在定義域內(nèi)單調(diào)遞增,∴,即對(duì)恒成立.

          恒成立.

          所以,的取值范圍是

          2)將表示為關(guān)于的函數(shù),

          ,得

          設(shè)方程,即得兩根為,,且.

          ,,∵,

          代入得

          ,則,得,,則

          而且上遞減,從而

          .

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖:已知某公園的四處景觀分別位于等腰梯形的四個(gè)頂點(diǎn)處,其中,兩地的距離為千米,,兩地的距離為千米,.現(xiàn)擬規(guī)劃在(不包括端點(diǎn))路段上增加一個(gè)景觀,并建造觀光路直接通往處,造價(jià)為每千米萬(wàn)元,又重新裝飾路段,造價(jià)為每千米萬(wàn)元.

          (1)若擬修建觀光路路段長(zhǎng)為千米,求路段的造價(jià);

          (2)設(shè),當(dāng)為何值時(shí),,段的總造價(jià)最低.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在四棱錐中,,,為等邊三角形,且平面平面,中點(diǎn).

          1)求證:平面;

          2)求二面角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某數(shù)學(xué)小組到進(jìn)行社會(huì)實(shí)踐調(diào)查,了解鑫鑫桶裝水經(jīng)營(yíng)部在為如何定價(jià)發(fā)愁。進(jìn)一步調(diào)研了解到如下信息:該經(jīng)營(yíng)部每天的房租、人員工資等固定成本為200元,每桶水的進(jìn)價(jià)是5元,銷售單價(jià)與日均銷售量的關(guān)系如下表:

          銷售單價(jià)/元

          6

          7

          8

          9

          10

          11

          12

          日均銷售量/桶

          480

          440

          400

          360

          320

          280

          240

          根據(jù)以上信息,你認(rèn)為該經(jīng)營(yíng)部定價(jià)為多少才能獲得最大利潤(rùn)?( )

          A.每桶8.5B.每桶9.5C.每桶10.5D.每桶11.5

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某射擊小組有甲、乙、丙三名射手,已知甲擊中目標(biāo)的概率是,甲、丙二人都沒(méi)有擊中目標(biāo)的概率是,乙、丙二人都擊中目標(biāo)的概率是.甲乙丙是否擊中目標(biāo)相互獨(dú)立.

          1)求乙、丙二人各自擊中目標(biāo)的概率;

          2)設(shè)乙、丙二人中擊中目標(biāo)的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知二次函數(shù).

          (1)的兩個(gè)不同零點(diǎn),是否存在實(shí)數(shù),使成立?若存在,的值;若不存在,請(qǐng)說(shuō)明理由.

          (2)設(shè),函數(shù),存在個(gè)零點(diǎn).

          (i)的取值范圍;

          (ii)設(shè)分別是這個(gè)零點(diǎn)中的最小值與最大值,的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓的左,右焦點(diǎn)分別為,,點(diǎn)為橢圓上任意一點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為點(diǎn),有,且當(dāng)的面積最大時(shí)為等邊三角形.

          1)求橢圓的標(biāo)準(zhǔn)方程;

          2)與圓相切的直線交橢圓,兩點(diǎn),若橢圓上存在點(diǎn)滿足,求四邊形面積的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】《中華人民共和國(guó)道路交通安全法》第47條的相關(guān)規(guī)定:機(jī)動(dòng)車行經(jīng)人行橫道時(shí),應(yīng)當(dāng)減速慢行;遇行人正在通過(guò)人行橫道,應(yīng)當(dāng)停車讓行,俗稱禮讓斑馬線,《中華人民共和國(guó)道路交通安全法》第90條規(guī)定:對(duì)不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.

          1)交警從這5個(gè)月內(nèi)通過(guò)該路口的駕駛員中隨機(jī)抽查了50人,調(diào)查駕駛員不禮讓斑馬線行為與駕齡的關(guān)系,得到如下列聯(lián)表:能否據(jù)此判斷有97.5%的把握認(rèn)為禮讓斑馬線行為與駕齡有關(guān)?

          不禮讓斑馬線

          禮讓斑馬線

          合計(jì)

          駕齡不超過(guò)1

          22

          8

          30

          駕齡1年以上

          8

          12

          20

          合計(jì)

          30

          20

          50

          2)下圖是某市一主干路口監(jiān)控設(shè)備所抓拍的5個(gè)月內(nèi)駕駛員不禮讓斑馬線行為的折線圖:

          請(qǐng)結(jié)合圖形和所給數(shù)據(jù)求違章駕駛員人數(shù)y與月份x之間的回歸直線方程,并預(yù)測(cè)該路口7月份的不禮讓斑馬線違章駕駛員人數(shù).

          附注:參考數(shù)據(jù):,

          參考公式:,(其中

          0.150

          0.100

          0.050

          0.025

          0.010

          0.005

          0.001

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在極坐標(biāo)系下,方程的圖形為如圖所示的“幸運(yùn)四葉草”,又稱為玫瑰線.

          (1)當(dāng)玫瑰線的時(shí),求以極點(diǎn)為圓心的單位圓與玫瑰線的交點(diǎn)的極坐標(biāo);

          (2)求曲線上的點(diǎn)M與玫瑰線上的點(diǎn)N距離的最小值及取得最小值時(shí)的點(diǎn)M、N的極坐標(biāo)(不必寫詳細(xì)解題過(guò)程).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案