日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】今年年初,中共中央、國務院發(fā)布《關于開展掃黑除惡專項斗爭的通知》,在全國范圍部署開展掃黑除惡專項斗爭.那么這次的“掃黑除惡”專項斗爭與2000年、2006年兩次在全國范圍內(nèi)持續(xù)開展了十多年的“打黑除惡”專項斗爭是否相同呢?某高校一個社團在年后開學后隨機調(diào)查了位該校在讀大學生,就“掃黑除惡”與“打黑除惡”是否相同進行了一次調(diào)查,得到具體數(shù)據(jù)如表:

          不相同

          相同

          合計

          合計

          (1)根據(jù)如上的列聯(lián)表,能否在犯錯誤的概率不超過的前提下,認為“掃黑除惡”與“打黑除惡”是否相同與性別有關"?

          (2)計算這位大學生認為“掃黑除惡”與“打黑除惡”不相同的頻率,并據(jù)此估算該校名在讀大學生中認為“掃黑除惡”與“打黑除惡”不相同的人數(shù);

          (3)為了解該校大學生對“掃黑除惡”與“打黑除惡”不同之處的知道情況,該校學生會組織部選取位男生和位女生逐個進行采訪,最后再隨機選取次采訪記錄放到該大學的官方網(wǎng)站上,求最后被選取的次采訪對象中至少有一位男生的概率.

          參考公式: .

          附表:

          【答案】(1)不能在犯錯誤的概率不超過的前提下,認為““掃黑除惡”與“打黑除惡”是否相同與性別有關”;(2);(3)。

          【解析】

          (1)計算觀測值k2,即可得出結論;(2)由圖表中的數(shù)據(jù)計算不相同的頻率, 據(jù)此估算該校名在讀大學生不相同的人數(shù);(3)根據(jù)古典概型求概率的方法即可求出.

          (1)根據(jù)列聯(lián)表中的數(shù)據(jù),得到的觀測值為

          故不能在犯錯誤的概率不超過的前提下,認為““掃黑除惡”與“打黑除惡”是否相同與性別有關”。

          (2)這位大學生認為“掃黑除惡”與“打黑除惡”不相同的頻率為

          據(jù)此估算該校名在讀大學生中認為“掃黑除惡”與“打黑除惡”不相同的人數(shù)為.

          (3)設選取的位男生和位女生分別記為,,,,隨機選取次采訪的所有結果

          ,,,,,,,,共有10個基本事件,

          至少有一位男生的基本事件有個,故所求概率為

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】某家庭記錄了未使用節(jié)水龍頭50天的日用水量數(shù)據(jù)(單位:m3)和使用了節(jié)水龍頭50天的日用水量數(shù)據(jù),得到頻數(shù)分布表如下:

          未使用節(jié)水龍頭50天的日用水量頻數(shù)分布表

          日用

          水量

          頻數(shù)

          1

          3

          2

          4

          9

          26

          5

          使用了節(jié)水龍頭50天的日用水量頻數(shù)分布表

          日用

          水量

          頻數(shù)

          1

          5

          13

          10

          16

          5

          (1)在答題卡上作出使用了節(jié)水龍頭50天的日用水量數(shù)據(jù)的頻率分布直方圖:

          2)估計該家庭使用節(jié)水龍頭后,日用水量小于0.35 m3的概率;

          3)估計該家庭使用節(jié)水龍頭后,一年能節(jié)省多少水?(一年按365天計算,同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表.)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓的兩個焦點坐標分別是、,并且經(jīng)過點.

          (1)求橢圓的方程;

          (2)若直線與圓相切,并與橢圓交于不同的兩點.,且滿足時,求面積的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知一圓經(jīng)過點,,且它的圓心在直線.

          I)求此圓的方程;

          II)若點為所求圓上任意一點,且點,求線段的中點的軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】《九章算木》中將底面為長方形,且有一條側棱與底面垂直的四棱錐稱之為“陽馬”,現(xiàn)有一陽馬,其正視圖和側視圖是如圖所示的直角三角形,該“陽馬”的體積為,若該陽馬的頂點都在同一個球面上,則該球的表面積為(

          正視圖 側視圖

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知極點與直角坐標系原點重合,極軸與x軸的正半軸重合,圓C的極坐標方程為,直線l的參數(shù)方程為為參數(shù)

          ,直線lx軸的交點為M,N是圓C上一動點,求的最小值;

          若直線l被圓C截得的弦長等于圓C的半徑,求a的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】規(guī)定,其中,是正整數(shù),且,這是組合數(shù)、是正整數(shù),且)的一種推廣.

          1)求的值;

          2)設,當為何值時,取得最小值?

          3)組合數(shù)的兩個性質(zhì):①..是否都能推廣到是正整數(shù))的情形?若能推廣,則寫出推廣的形式并給出證明;若不能,則說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】某城市戶居民的月平均用電量(單位:度),以,,,,分組的頻率分布直方圖如圖.

          1)求直方圖中的值;

          2)求月平均用電量的眾數(shù)和中位數(shù);

          3)在月平均用電量為,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應抽取多少戶?

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】“克拉茨猜想”又稱“猜想”,是德國數(shù)學家洛薩克拉茨在1950年世界數(shù)學家大會上公布的一個猜想:任給一個正整數(shù),如果是偶數(shù),就將它減半;如果為奇數(shù)就將它乘3加1,不斷重復這樣的運算,經(jīng)過有限步后,最終都能夠得到1.己知正整數(shù)經(jīng)過6次運算后得到1,則的值為__________

          查看答案和解析>>

          同步練習冊答案