【題目】數(shù)學(xué)名著《算學(xué)啟蒙》中有關(guān)于“松竹并生”的問題:松長四尺,竹長兩尺,松日自半,竹日自倍,松竹何日而長等.如圖,是源于其思想的一個程序框圖.若輸入的分別為8、2,則輸出的
( )
A. 2 B. 3 C. 4 D. 5
【答案】D
【解析】
由已知中的程序框圖可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計算并輸出變量n的值,模擬程序的運(yùn)行過程,可得答案.
輸入的a、b分別為8、2,n=1
第一次執(zhí)行循環(huán)體后a=12,b=4,不滿足退出循環(huán)的條件,
第二次執(zhí)行循環(huán)體后n=2,a=18,b=8,不滿足退出循環(huán)的條件,
第三次執(zhí)行循環(huán)體后n=3,a=27,b=16,不滿足退出循環(huán)的條件,
第四次執(zhí)行循環(huán)體后n=4,a,b=32,不滿足退出循環(huán)的條件,
第五次執(zhí)行循環(huán)體后n=5,a,b=64,滿足退出循環(huán)的條件,
故輸出的n=5,
故選:D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面
是平行四邊形,
平面
,
,
,
是棱
上的一點(diǎn).
(1)證明:平面
;
(2)若平面
,求
的值;
(3)在(2)的條件下,三棱錐的體積是18,求
點(diǎn)到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過點(diǎn)的直線
與橢圓
:
交于不同的兩點(diǎn)
,其中
,
為坐標(biāo)原點(diǎn).
(1)若,求
的面積;
(2)在軸上是否存在定點(diǎn)
,使得直線
與
的斜率互為相反數(shù)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年冬,北京霧霾天數(shù)明顯減少,據(jù)環(huán)保局統(tǒng)計三個月的空氣質(zhì)量,達(dá)到優(yōu)良的天數(shù)超過70天.重度污染的天數(shù)僅有4天.主要原因是政府對治理霧霾采取了有效措施,如①減少機(jī)動車尾氣排放;②實施了煤改電或煤改氣工程;③關(guān)停了大量的排污企業(yè);④部分企業(yè)季節(jié)性的停產(chǎn).為了解農(nóng)村地區(qū)實施煤改氣工程后天然氣使用情況,從某鄉(xiāng)鎮(zhèn)隨機(jī)抽取100戶,進(jìn)行均用氣量調(diào)查,得到的用氣量數(shù)據(jù)(單位:千立方米)均在區(qū)間圍內(nèi),將數(shù)據(jù)按區(qū)間列表如下:
分組 | 頻數(shù) | 頻率 |
14 | 0.14 | |
55 | 0.55 | |
4 | 0.04 | |
2 | 0.02 | |
合計 | 100 | 1 |
(1)求表中,
的值;
(2)若同組中的每個數(shù)據(jù)用該組區(qū)間中點(diǎn)值代替,估計該鄉(xiāng)每戶月平均用氣量;
(3)從用量高于3千立方米的用戶中任選2戶,進(jìn)行燃?xì)馐褂玫臐M意度調(diào)查,求這2戶用氣量處于不同區(qū)間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為
,求該四棱錐的側(cè)面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)縮短為原來的
,縱坐標(biāo)不變,再向右平移
個單位長度,得到函數(shù)
的圖象,則下列說法正確的是( )
A. 函數(shù)的一條對稱軸是
B. 函數(shù)的一個對稱中心是
C. 函數(shù)的一條對稱軸是
D. 函數(shù)的一個對稱中心是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
,
為參數(shù)),以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,直線
的坐標(biāo)方程為
,若直線
與曲線
相切.
(1)求曲線的極坐標(biāo)方程;
(2)在曲線上取兩點(diǎn)
、
于原點(diǎn)
構(gòu)成
,且滿足
,求面積
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=x2+x﹣lnx+1在其定義域的一個子區(qū)間(2k﹣1,k+2)內(nèi)不是單調(diào)函數(shù),則實數(shù)k的取值范圍是___.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的個數(shù)為( )
①命題“中,若
,則
”的逆命題是真命題
②若命題,則
③“命題為真命題”是“命題
為假命題”的充要條件
④設(shè)均為非零向量,則“
”是“
與
的夾角為銳角”的必要不充分條件
A.1B.2C.3D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com