日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,四棱錐P-ABCD中,底面ABCD為菱形,PD=AD,∠DAB=60°,PD⊥底面ABCD.
          (1)求證AC⊥PB;
          (2)求PA與平面PBC所成角的正弦值.
          分析:(1)要證AC⊥PB,可以通過證明AC⊥面PDB實(shí)現(xiàn),而后者可由AC⊥BD,AC⊥PD證得.
          (2)求出A到平面PBC的距離為h(可以利用等體積法),再與PA作比值,即為PA與平面PBC所成角的正弦值.
          解答:(1)證明∵底面ABCD為菱形,∴AC⊥BD,
          ∵PD⊥底面ABCD,∴AC⊥PD,
          ∵BD∩PD=D,∴AC⊥面PDB,
          ∵PB?面PDB∴AC⊥PB.
          (2)解:設(shè)PD=AD=1,設(shè)A到平面PBC的距離為h,
          則由題意PA=PB=PC=
          2
          ,S△ABC=
          1
          2
          ×
          3
          ×
          1
          2
          =
          3
          4

          在等腰△PBC中,可求S△PBC=
          1
          2
          ×1×
          (
          2
          )
          2
          (
          1
          2
          )
          2
          =
          7
          4

          ∴V A-PBC=V P-ABC,
          1
          3
          ×h×
          7
          4
          =
          1
          3
          ×1×
          3
          4
          ,h=
          21
          7

          ∴sinθ=
          h
          PA
          =
          21
          7
          2
          =
          42
          14
          點(diǎn)評(píng):本題考查空間直線和直線垂直的判定.線面角求解.考查空間想象、推理論證能力.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
          E是PC的中點(diǎn).求證:
          (Ⅰ)CD⊥AE;
          (Ⅱ)PD⊥平面ABE.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,四棱錐P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,側(cè)面PAD⊥底面ABCD,且△PAD為等腰直角三角形,∠APD=90°,M為AP的中點(diǎn).
          (1)求證:AD⊥PB;
          (2)求三棱錐P-MBD的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,四棱錐P-ABCD的底面ABCD是矩形,AB=2,BC=
          2
          ,且側(cè)面PAB是正三角形,平面PAB⊥平面ABCD.
          (1)求證:PD⊥AC;
          (2)在棱PA上是否存在一點(diǎn)E,使得二面角E-BD-A的大小為45°,若存在,試求
          AE
          AP
          的值,若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥底面ABCD,且PA=AB=1,AD=
          3
          ,點(diǎn)F是PB中點(diǎn).
          (Ⅰ)若E為BC中點(diǎn),證明:EF∥平面PAC;
          (Ⅱ)若E是BC邊上任一點(diǎn),證明:PE⊥AF;
          (Ⅲ)若BE=
          3
          3
          ,求直線PA與平面PDE所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,四棱錐P-ABCD,PA⊥平面ABCD,ABCD是直角梯形,DA⊥AB,CB⊥AB,PA=2AD=BC=2,AB=2
          2
          ,設(shè)PC與AD的夾角為θ.
          (1)求點(diǎn)A到平面PBD的距離;
          (2)求θ的大;當(dāng)平面ABCD內(nèi)有一個(gè)動(dòng)點(diǎn)Q始終滿足PQ與AD的夾角為θ,求動(dòng)點(diǎn)Q的軌跡方程.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案