日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)

          (1)求曲線在點(diǎn)處的切線方程;

          (2)令,討論的單調(diào)性并判斷有無極值,若有,求出極值.

          【答案】(1)y=1;(2)見解析.

          【解析】試題分析:(1)求出的值可得切點(diǎn)坐標(biāo),求得,求出的值,可得切線斜率,利用點(diǎn)斜式可得曲線在點(diǎn)處的切線方程;(2)依題意得,可得, ,則,函數(shù)在R上單調(diào)遞增,分四種情況討論: 時, 時, 時, 時,分別利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,令求得的范圍,可得函數(shù)增區(qū)間, 求得的范圍,可得函數(shù)的減區(qū)間,根據(jù)單調(diào)性可得函數(shù)的極值.

          試題解析:(1)

          則切線方程為

          (2)依題意得

          ,則

          ∴函數(shù)在R上單調(diào)遞增.

          時, ; 時,

          當(dāng)時, ,則時, ,函數(shù)在(0,+∞)單調(diào)遞增; 時, ,函數(shù)在(﹣∞,0)單調(diào)遞減.

          時,函數(shù)取得極小值, ,無極大值

          當(dāng)時,令,則,

          時, 時, , ,函數(shù)單調(diào)遞增;

          時, , ,函數(shù)單調(diào)遞減;

          時, , ,函數(shù)單調(diào)遞增

          ∴當(dāng)時,函數(shù)取得極小值, .當(dāng)時,函數(shù)取得極大值,

          時, , 時,

          ∴函數(shù)上單調(diào)遞增,無極值

          時, , 時, ,函數(shù)單調(diào)遞增;

          時, ,函數(shù)單調(diào)遞減;

          時, , ,函數(shù)單調(diào)遞增.

          ∴當(dāng)時,函數(shù)取得極大值, ,當(dāng)時,函數(shù)取得極小值,

          綜上所述:當(dāng)時,函數(shù)在(0,+∞)單調(diào)遞增,在(﹣∞,0)單調(diào)遞減, 極小值為﹣1﹣2a,無極大值;

          當(dāng)時,函數(shù),(0,+∞)上單調(diào)遞增,在上單調(diào)遞減, 極小值為,極大值為

          當(dāng)時,函數(shù)上單調(diào)遞增,無極值

          當(dāng)時,函數(shù)在(﹣∞,0),上單調(diào)遞增,在上單調(diào)遞減, 極大值為.極小值為

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),一個焦點(diǎn)坐標(biāo)是,離心率為.

          (1)求橢圓的標(biāo)準(zhǔn)方程;

          (2)過作直線交橢圓于兩點(diǎn), 是橢圓的另一個焦點(diǎn),求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】數(shù)列 滿足: , 或1().對任意,都存在,使得.,其中 且兩兩不相等.

          (I)若.寫出下列三個數(shù)列中所有符合題目條件的數(shù)列的序號;

          ①1,1,1,2,2,2;②1,1,1,1,2,2,2,2;③1,l,1,1,1,2,2,2,2

          (Ⅱ)記.若,證明: ;

          (Ⅲ)若,求的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù),曲線在點(diǎn)處的切線方程為

          )求

          )設(shè),求的最大值.

          )證明函數(shù)的圖像與直線沒有公共點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系,點(diǎn)的極坐標(biāo)為,直線的極坐標(biāo)方程為,且過點(diǎn),曲線的參考方程為為參數(shù)).

          (1)求曲線上的點(diǎn)到直線的距離的最大值與最小值;

          (2)過點(diǎn)與直線平行的直線與曲線交于兩點(diǎn),求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知直線過點(diǎn),圓:,直線與圓交于兩點(diǎn).

          ) 求直線的方程;

          )求直線的斜率的取值范圍;

          (Ⅲ)是否存在過點(diǎn)且垂直平分弦的直線?若存在,求直線斜率的值,若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知四棱錐中, 平面,底面為菱形, , 中點(diǎn), 的中點(diǎn), 上的點(diǎn).

          (Ⅰ)求證:平面平面;

          (Ⅱ)當(dāng)中點(diǎn),且時,求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)),設(shè)的交點(diǎn)為,當(dāng)變化時, 的軌跡為曲線.

          (1)寫出的普遍方程及參數(shù)方程;

          (2)以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,設(shè)曲線的極坐標(biāo)方程為, 為曲線上的動點(diǎn),求點(diǎn)的距離的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】汽車的燃油效率是指汽車每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況. 下列敘述中正確的是( )

          A. 消耗1升汽油,乙車最多可行駛5千米

          B. 以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多

          C. 甲車以80千米/小時的速度行駛1小時,消耗10升汽油

          D. 某城市機(jī)動車最高限速80千米/小時. 相同條件下,在該市用丙車比用乙車更省油

          查看答案和解析>>

          同步練習(xí)冊答案