日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,四棱錐,,,,M,O分別為CDAC的中點(diǎn),平面ABCD

          求證:平面平面PAC;

          是否存在線段PM上一點(diǎn)N,使得平面PAB,若存在,求的值,如果不存在,說(shuō)明理由.

          【答案】(1)見(jiàn)解析(2)當(dāng)NPM靠近P點(diǎn)的三等分點(diǎn)時(shí),平面PAB

          【解析】

          連結(jié)MO并延長(zhǎng)交ABE,設(shè)ACBM的交點(diǎn)為,故,于是,,根據(jù)勾股定理求出AC,BM的值得出BF,CF,由勾股定理得逆定理得出,又由平面ABCD,故BF平面PAC,于是平面平面PAC;

          連結(jié)PE,則當(dāng)平面PAB時(shí),,故當(dāng)時(shí),結(jié)論成立.

          解:連結(jié)MO并延長(zhǎng)交ABE,設(shè)AC,BM的交點(diǎn)為F

          OCD,AC的中點(diǎn),,,

          AB的中點(diǎn),

          ,,

          ,

          ,

          ,

          ,即

          平面ABCD,平面ABCD,

          ,又平面PAC,平面PAC,

          平面PAC,又平面PBM,

          平面

          當(dāng)NPM靠近P點(diǎn)的三等分點(diǎn)時(shí),平面PAB

          證明:連結(jié)PE,由可知,

          ,

          ,又平面PAB平面PAB,

          平面PAB

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)函數(shù)f(x)的定義域?yàn)?-3,3),

          滿足f(-x)=-f(x),且對(duì)任意xy,都有f(x)-f(y)=f(xy),當(dāng)x<0時(shí),f(x)>0,f(1)=-2.

          (1)求f(2)的值;

          (2)判斷f(x)的單調(diào)性,并證明;

          (3)若函數(shù)g(x)=f(x-1)+f(3-2x),求不等式g(x)≤0的解集.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)

          1當(dāng)時(shí),求不等式的解集;

          2若關(guān)于x的不等式有實(shí)數(shù)解,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù).

          1,求函數(shù)的極值;

          2當(dāng) 時(shí),判斷函數(shù)在區(qū)間上零點(diǎn)的個(gè)數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù).

          (1)若,函數(shù)圖象上是否存在兩條互相垂直的切線,若存在,求出這兩條切線若不存在,說(shuō)明理由.

          (2)若函數(shù)上有零點(diǎn)求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】德國(guó)著名數(shù)學(xué)家狄利克雷在數(shù)學(xué)領(lǐng)域成就顯著,函數(shù)被稱為狄利克雷函數(shù),其中為實(shí)數(shù)集,為有理數(shù)集,則關(guān)于函數(shù)有如下四個(gè)命題:

          ;

          ②函數(shù)是偶函數(shù);

          ③任取一個(gè)不為零的有理數(shù)對(duì)任意的恒成立;

          ④存在三個(gè)點(diǎn),使得為等邊三角形.

          其中真命題的個(gè)數(shù)是(

          A.1B.2C.3D.4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知數(shù)列的前項(xiàng)和為,滿足 (),數(shù)列滿足 (),

          1證明數(shù)列為等差數(shù)列,并求數(shù)列的通項(xiàng)公式;

          2,求數(shù)列的前項(xiàng)和;

          3)若,數(shù)列的前項(xiàng)和為,對(duì)任意的,都有,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè),,若的充分條件.

          1)求證:函數(shù)的圖像總在直線的下方;

          2)是否存在實(shí)數(shù),使得不等式對(duì)一切實(shí)數(shù)恒成立?若存在,求出的取值范圍;若不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】選修4-5:不等式選講

          已知函數(shù).

          (1)求不等式的解集;

          (2)若對(duì)任意的,都有成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案