【題目】()直線過點(diǎn)(2,3),且當(dāng)傾斜角是直線
的傾斜角的二倍時(shí),求直線方程.
()當(dāng)與
軸正半軸交于
點(diǎn)、
軸正半軸交于
點(diǎn),且
的面積最小時(shí),求直線方程.
【答案】(1) ;(2)
.
【解析】試題分析:
(1)由題意可得題中直線的傾斜角為60°,據(jù)此利用點(diǎn)斜式可得所求直線的方程為.
(2)由題意求得面積函數(shù)的解析式,結(jié)合均值不等式的結(jié)論可得當(dāng)且僅當(dāng)
時(shí)等式成立面積取得最小值,此時(shí)直線方程為
.
試題解析:
()
的斜率為
,
即:傾斜角為,
∴,
∴,
即: .
()設(shè)
,
,
令,
,
令,
,
∴,
當(dāng)且僅當(dāng)時(shí)等式成立.
∴.
點(diǎn)睛:在應(yīng)用基本不等式求最值時(shí),要把握不等式成立的三個(gè)條件,就是“一正——各項(xiàng)均為正;二定——積或和為定值;三相等——等號(hào)能否取得”,若忽略了某個(gè)條件,就會(huì)出現(xiàn)錯(cuò)誤.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐中,
面
,
是平行四邊形,
,
,點(diǎn)
為棱
的中點(diǎn),點(diǎn)
在棱
上,且
,平面
與
交于點(diǎn)
,則異面直線
與
所成角的正切值為__________.
【答案】
【解析】
延長交
的延長線與點(diǎn)Q,連接QE交PA于點(diǎn)K,設(shè)QA=x,
由,得
,則
,所以
.
取的中點(diǎn)為M,連接EM,則
,
所以,則
,所以AK=
.
由AD//BC,得異面直線與
所成角即為
,
則異面直線與
所成角的正切值為
.
【題型】填空題
【結(jié)束】
17
【題目】在極坐標(biāo)系中,極點(diǎn)為,已知曲線
:
與曲線
:
交于不同的兩點(diǎn)
,
.
(1)求的值;
(2)求過點(diǎn)且與直線
平行的直線
的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(Ⅰ)若,求證:函數(shù)
在(1,+∞)上是增函數(shù);
(Ⅱ)求函數(shù)在[1,e]上的最小值及相應(yīng)的
值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. 一枚骰子擲一次得到2點(diǎn)的概率為,這說明一枚骰子擲6次會(huì)出現(xiàn)一次2點(diǎn)
B. 某地氣象臺(tái)預(yù)報(bào)說,明天本地降水的概率為70%,這說明明天本地有70%的區(qū)域下雨,30%的區(qū)域不下雨
C. 某中學(xué)高二年級(jí)有12個(gè)班,要從中選2個(gè)班參加活動(dòng),由于某種原因,一班必須參加,另外再從二至十二班中選一個(gè)班,有人提議用如下方法:擲兩枚骰子得到的點(diǎn)數(shù)是幾,就選幾班,這是很公平的方法
D. 在一場(chǎng)乒乓球賽前,裁判一般用擲硬幣猜正反面來決定誰先打球,這應(yīng)該說是公平的
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是直角梯形,
,
,
,
,又
,
,
,直線
與直線
所成的角為
.
(1)求證:平面平面
;
(2)(文科)求三棱錐的體積.
(理科)求二面角平面角正切值的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)甲、乙兩種產(chǎn)品,已知生產(chǎn)每噸甲、乙兩種產(chǎn)品所需煤、電力、勞動(dòng)力、獲得利潤及每天資源限額(最大供應(yīng)量)如表所示:
資源 消耗量 產(chǎn)品 | 甲產(chǎn)品(每噸) | 乙產(chǎn)品(每噸) | 資源限額(每天) |
煤( | 9 | 4 | 360 |
電力( | 4 | 5 | 200 |
勞力(個(gè)) | 3 | 10 | 300 |
利潤(萬元) | 7 | 12 |
問:每天生產(chǎn)甲、乙兩種產(chǎn)品各多少噸,獲得利潤總額最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三角形PDC所在的平面與長方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.點(diǎn)E是CD邊的中點(diǎn),點(diǎn)F,G分別在線段AB,BC上,且AF=2FB,CG=2GB.
(1)證明:PE⊥FG;
(2)求二面角PADC的正切值;
(3)求直線PA與直線FG所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù)f(x)=(x+l)lnx﹣ax+a (a為正實(shí)數(shù),且為常數(shù))
(1)若f(x)在(0,+∞)上單調(diào)遞增,求a的取值范圍;
(2)若不等式(x﹣1)f(x)≥0恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體的棱長為 1,
為
的中點(diǎn),
為線段
上的動(dòng)點(diǎn),過點(diǎn)A、P、Q的平面截該正方體所得的截面記為
.則下列命題正確的是__________(寫出所有正確命題的編號(hào)).
①當(dāng)時(shí),
為四邊形;②當(dāng)
時(shí),
為等腰梯形;③當(dāng)
時(shí),
為六邊形;④當(dāng)
時(shí),
的面積為
.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com