日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在長方形中, , ,現(xiàn)將沿折起,使折到的位置且在面的射影恰好在線段上.

          (Ⅰ)證明: ;

          (Ⅱ)求銳二面角的余弦值.

          【答案】(Ⅰ)見解析;(Ⅱ) .

          【解析】試題分析:(1)先證明平面 ,進(jìn)而得到平面 ,從而得證;(2) 為原點(diǎn),建立空間直角坐標(biāo)系.求出平面與平面的法向量,代入公式得到結(jié)果.

          試題解析:

          (Ⅰ)由題知平面,又平面;

          ,平面

          平面,;

          ,平面

          平面,所以

          (Ⅱ)在中, , 由射影定理知, .

          為原點(diǎn),建立如圖所示空間直角坐標(biāo)系.

          , , , , ,

          設(shè)是平面的一個法向量,

          ,,即,

          ,取,所以;

          設(shè)是平面的一個法向量,

          ,即

          ,取,所以;

          設(shè)銳二面角的大小為,

          所以銳二面角余弦值為.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知A,B,C分別為△ABC的三邊a,b,c所對的角,向量(sin Asin B),(cos Bcos A),且sin 2C.

          (1)求角C的大小;

          (2)sin Asin C,sin B成等差數(shù)列,且,求邊c的長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,橢圓的離心率為,點(diǎn)在橢圓.

          求橢圓的方程;

          已知為平面內(nèi)的兩個定點(diǎn),過點(diǎn)的直線與橢圓交于兩點(diǎn),求四邊形面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知在等比數(shù)列中, ,且, 成等差數(shù)列.

          (Ⅰ)求數(shù)列的通項(xiàng)公式;

          (Ⅱ)若數(shù)列滿足,數(shù)列的前項(xiàng)和為,試比較的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          在直角坐標(biāo)系中,曲線的普通方程為,以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,并取與直角坐標(biāo)系相同的長度單位,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

          (Ⅰ)求曲線、的參數(shù)方程;

          (Ⅱ)若點(diǎn)、分別在曲線上,求的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (1)若在定義域上不單調(diào),求的取值范圍;

          (2)設(shè)分別是的極大值和極小值,且,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】中,D,E分別為AB,AC的中點(diǎn),,以DE為折痕將折起,使點(diǎn)A到達(dá)點(diǎn)P的位置,如圖.

          (1)證明:;

          (2)若平面DEP平面BCED,求直線DC與平面BCP所成角的正弦值。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          1)若為銳角,,求的值;

          2)函數(shù),若對任意都有恒成立,求實(shí)數(shù)的最大值;

          3)已知,,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某客運(yùn)公司用、兩種型號的車輛承擔(dān)甲、乙兩地的長途客運(yùn)業(yè)務(wù),每車每天往返一次.、兩種型號的車輛的載客量分別是32人和48人,從甲地到乙地的營運(yùn)成本依次為1500元/輛和2000元/輛.公司擬組建一個不超過21輛車的車隊(duì),并要求種型號的車不多于種型號的車5輛.若每天從甲地運(yùn)送到乙地的旅客不少于800人,為使公司從甲地到乙地的營運(yùn)成本最小,應(yīng)配備、兩種型號的車各多少輛?并求出最小營運(yùn)成本.

          查看答案和解析>>

          同步練習(xí)冊答案