【題目】已知點(diǎn),過點(diǎn)
作與
軸平行的直線
,點(diǎn)
為動(dòng)點(diǎn)
在直線
上的投影,且滿足
.
(1)求動(dòng)點(diǎn)的軌跡
的方程;
(2)已知點(diǎn)為曲線
上的一點(diǎn),且曲線
在點(diǎn)
處的切線為
,若
與直線
相交于點(diǎn)
,試探究在
軸上是否存在點(diǎn)
,使得以
為直徑的圓恒過點(diǎn)
?若存在,求出點(diǎn)
的坐標(biāo),若不存在,說明理由.
【答案】(1);(2)見解析.
【解析】
試題分析:(1)設(shè),由題得
,則
,
,由
化簡(jiǎn)即可得動(dòng)點(diǎn)
的軌跡
的方程;(2)設(shè)點(diǎn)
,
,根據(jù)導(dǎo)數(shù)的幾何意義,結(jié)合直線的點(diǎn)斜式方程可得直線
的方程為
,從而得
點(diǎn)的坐標(biāo)為
,由
恒成立得
解得
,進(jìn)而可得結(jié)果.
試題解析:(1)設(shè),由題得
又,
∴,
,
由,
得,即
,
∴軌跡的方程為
.
(2)設(shè)點(diǎn),
,
由,得
,
∴,
∴直線的方程為
令,可得
,
∴點(diǎn)的坐標(biāo)為
,
∴
,(*)
要使方程(*)對(duì)恒成立,則必有
解得
.
即在軸上存在點(diǎn)
,使得以
為直徑的圓恒過點(diǎn)
,其坐標(biāo)為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C對(duì)應(yīng)的邊分別是a,b,c,已知cos2A﹣3cos(B+C)=1.
(1)求角A的大;
(2)若△ABC的面積S=5,b=5,求sinBsinC的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列是首項(xiàng)
的等差數(shù)列,設(shè)
.
(1)求證:是等比數(shù)列;
(2)記,求數(shù)列
的前
項(xiàng)和
;
(3)在(2)的條件下,記,若對(duì)任意正整數(shù)
,不等式
恒成立,求整數(shù)
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2017·江蘇高考)如圖,在三棱錐ABCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,點(diǎn)E,F(E與A,D不重合)分別在棱AD,BD上,且EF⊥AD.
求證:(1)EF∥平面ABC;
(2)AD⊥AC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】伴隨著智能手機(jī)的深入普及,支付形式日漸多樣化,打破了傳統(tǒng)支付的局限性和壁壘,有研究表明手機(jī)支付的使用比例與人的年齡存在一定的關(guān)系,某調(diào)研機(jī)構(gòu)隨機(jī)抽取了50人,對(duì)他們一個(gè)月內(nèi)使用手機(jī)支付的情況進(jìn)行了統(tǒng)計(jì),如下表:
(1)若以“年齡55歲為分界點(diǎn)”,由以上統(tǒng)計(jì)數(shù)據(jù)完成下面的列聯(lián)表,并判斷是否有
的把握認(rèn)為“使用手機(jī)支付”與人的年齡有關(guān);
(2)若從年齡在,
內(nèi)的被調(diào)查人中各隨機(jī)選取2人進(jìn)行追蹤調(diào)查,記選中的4人中“使用手機(jī)支付”的人數(shù)為
.
①求隨機(jī)變量的分布列;
②求隨機(jī)變量的數(shù)學(xué)期望.
參考數(shù)據(jù)如下:
0.05 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
參考格式:,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線
的參數(shù)方程是
(
為參數(shù)),以該直角坐標(biāo)系的原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
.
(1)寫出曲線的普通方程和直線
的直角坐標(biāo)方程;
(2)設(shè)點(diǎn),直線
與曲線
相交于
兩點(diǎn),且
,求實(shí)數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面
為梯形,
,
.
是
的中點(diǎn),
底面
,
在平面
上的正投影為點(diǎn)
,延長(zhǎng)
交
于點(diǎn)
.
(1)求證:為
中點(diǎn);
(2)若,
,在棱
上確定一點(diǎn)
,使得
平面
,并求出
與面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(
為常數(shù)),曲線
在與
軸的交點(diǎn)A處的切線與
軸平行.
(1)求的值及函數(shù)
的單調(diào)區(qū)間;
(2)若存在不相等的實(shí)數(shù)使
成立,試比較
與
的大小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com