日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知點(diǎn),過點(diǎn)作與軸平行的直線,點(diǎn)為動(dòng)點(diǎn)在直線上的投影,且滿足.

          (1)求動(dòng)點(diǎn)的軌跡的方程

          (2)已知點(diǎn)為曲線上的一點(diǎn),且曲線在點(diǎn)處的切線為,若與直線相交于點(diǎn),試探究在軸上是否存在點(diǎn),使得以為直徑的圓恒過點(diǎn)?若存在,求出點(diǎn)的坐標(biāo),若不存在,說明理由.

          【答案】(1);(2)見解析.

          【解析】

          試題分析:(1)設(shè),由題得,則,,由化簡(jiǎn)即可得動(dòng)點(diǎn)的軌跡的方程;(2)設(shè)點(diǎn),根據(jù)導(dǎo)數(shù)的幾何意義,結(jié)合直線的點(diǎn)斜式方程可得直線的方程為,從而得點(diǎn)的坐標(biāo)為,由恒成立得解得,進(jìn)而可得結(jié)果.

          試題解析:(1)設(shè),由題得

          ,

          ,

          ,

          ,即,

          ∴軌跡的方程為.

          (2)設(shè)點(diǎn),

          ,得,

          ,

          ∴直線的方程為

          ,可得,

          點(diǎn)的坐標(biāo)為,

          ,(*)

          要使方程(*)對(duì)恒成立,則必有解得.

          即在軸上存在點(diǎn),使得以為直徑的圓恒過點(diǎn),其坐標(biāo)為.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】△ABC中,角AB,C對(duì)應(yīng)的邊分別是a,bc,已知cos2A﹣3cosB+C=1

          1)求角A的大;

          2)若△ABC的面積S=5,b=5,求sinBsinC的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列是首項(xiàng)的等差數(shù)列,設(shè).

          (1)求證:是等比數(shù)列;

          (2)記,求數(shù)列的前項(xiàng)和

          (3)在(2)的條件下,記,若對(duì)任意正整數(shù),不等式恒成立,求整數(shù)的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】(2017·江蘇高考)如圖,在三棱錐ABCD中,ABAD,BCBD,平面ABD⊥平面BCD,點(diǎn)E,F(EA,D不重合)分別在棱AD,BD上,且EFAD.

          求證:(1)EF∥平面ABC;

          (2)ADAC.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】伴隨著智能手機(jī)的深入普及,支付形式日漸多樣化,打破了傳統(tǒng)支付的局限性和壁壘,有研究表明手機(jī)支付的使用比例與人的年齡存在一定的關(guān)系,某調(diào)研機(jī)構(gòu)隨機(jī)抽取了50人,對(duì)他們一個(gè)月內(nèi)使用手機(jī)支付的情況進(jìn)行了統(tǒng)計(jì),如下表:

          (1)若以“年齡55歲為分界點(diǎn)”,由以上統(tǒng)計(jì)數(shù)據(jù)完成下面的列聯(lián)表,并判斷是否有的把握認(rèn)為“使用手機(jī)支付”與人的年齡有關(guān);

          (2)若從年齡在,內(nèi)的被調(diào)查人中各隨機(jī)選取2人進(jìn)行追蹤調(diào)查,記選中的4人中“使用手機(jī)支付”的人數(shù)為.

          ①求隨機(jī)變量的分布列;

          ②求隨機(jī)變量的數(shù)學(xué)期望.

          參考數(shù)據(jù)如下:

          0.05

          0.010

          0.001

          3.841

          6.635

          10.828

          參考格式:,其中

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程是為參數(shù)),以該直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

          (1)寫出曲線的普通方程和直線的直角坐標(biāo)方程;

          (2)設(shè)點(diǎn),直線與曲線相交于兩點(diǎn),且,求實(shí)數(shù)的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐中,底面為梯形,,.的中點(diǎn),底面在平面上的正投影為點(diǎn),延長(zhǎng)于點(diǎn).

          (1)求證:中點(diǎn);

          (2)若,在棱上確定一點(diǎn),使得平面,并求出與面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)。

          1)若是曲線的切線,的值;

          2)若,的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)(為常數(shù)),曲線在與軸的交點(diǎn)A處的切線與軸平行.

          (1)的值及函數(shù)的單調(diào)區(qū)間;

          (2)若存在不相等的實(shí)數(shù)使成立,試比較的大小.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案