【題目】已知橢圓:
的左、右頂點分別為C、D,且過點
,P是橢圓上異于C、D的任意一點,直線PC,PD的斜率之積為
.
(1)求橢圓的方程;
(2)O為坐標原點,設直線CP交定直線x = m于點M,當m為何值時,為定值.
【答案】(1)(2)
【解析】
(1)設,根據(jù)題意可求得
,再代
入橢圓方程即可求解.
(2)根據(jù)(1)中的結(jié)論, 設直線,并聯(lián)立與橢圓的方程,求得
,
,再表達出
,根據(jù)恒成立問題求得系數(shù)的關系即可.也可直接設
表達出
,利用
滿足橢圓的方程進行化簡,同理可得m的值.
解:(1)橢圓過點
,∴
,①
又因為直線的斜率之積為
,故
.
又.即
,②
聯(lián)立①②得.
∴所求的橢圓方程為.
(2)方法1:由(1)知,.由題意可設
,
令x=m,得.又設
由整理得:
.
∵,∴
,
,
所以,
∴,
要使與k無關,只需
,此時
恒等于4.
∴
方法2::設,則
,令x=m,得
,
∴
由有
,
所以,
要使與
無關,只須
,此時
.
∴
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在點
處的切線方程為
,求
的值;
(2)若的導函數(shù)
存在兩個不相等的零點,求實數(shù)
的取值范圍;
(3)當時,是否存在整數(shù)
,使得關于
的不等式
恒成立?若存在,求出
的最大值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓(
)的左、右焦點分別是
,
,點
為
的上頂點,點
在
上,
,且
.
(1)求的方程;
(2)已知過原點的直線與橢圓
交于
,
兩點,垂直于
的直線
過
且與橢圓
交于
,
兩點,若
,求
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=4x+3sinx,x∈(-1,1),如果f(1-a)+f(1-a2)<0成立,則實數(shù)a的取值范圍為( )
A. (0,1) B. C.
D. (-∞,-2)∪(1,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解運動健身減肥的效果,某健身房調(diào)查了20名肥胖者,健身之前他們的體重情況如三維餅圖(1)所示,經(jīng)過四個月的健身后,他們的體重情況如三維餅圖(2)所示.對比健身前后,關于這20名肥胖者,下面結(jié)論不正確的是( )
A.他們健身后,體重在區(qū)間[90kg,100kg)內(nèi)的人數(shù)不變
B.他們健身后,體重在區(qū)間[100kg,110kg)內(nèi)的人數(shù)減少了4人
C.他們健身后,這20位健身者體重的中位數(shù)位于[90kg,100kg)
D.他們健身后,原來體重在[110kg,120kg]內(nèi)的肥胖者體重都至少減輕了10kg
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠加工某種零件需要經(jīng)過,
,
三道工序,且每道工序的加工都相互獨立,三道工序加工合格的概率分別為
,
,
.三道工序都合格的零件為一級品;恰有兩道工序合格的零件為二級品;其它均為廢品,且加工一個零件為二級品的概率為
.
(1)求;
(2)若該零件的一級品每個可獲利200元,二級品每個可獲利100元,每個廢品將使工廠損失50元,設一個零件經(jīng)過三道工序加工后最終獲利為元,求
的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知兩定點,
,點P滿足
.
(1)求點P的軌跡C的方程;
(2)若,直線l與軌跡C交于A,B兩點,
,
的斜率之和為2,問直線l是否恒過定點,若過定點,求出定點的坐標;若不過定點,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,過拋物線上一點
,作兩條直線分別交拋物線于
,
,當
與
的斜率存在且傾斜角互補時:
(Ⅰ)求的值;
(Ⅱ)若直線在
軸上的截距
時,求
面積
的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com