【題目】為了解運(yùn)動(dòng)健身減肥的效果,某健身房調(diào)查了20名肥胖者,健身之前他們的體重情況如三維餅圖(1)所示,經(jīng)過四個(gè)月的健身后,他們的體重情況如三維餅圖(2)所示.對(duì)比健身前后,關(guān)于這20名肥胖者,下面結(jié)論不正確的是( )
A.他們健身后,體重在區(qū)間[90kg,100kg)內(nèi)的人數(shù)不變
B.他們健身后,體重在區(qū)間[100kg,110kg)內(nèi)的人數(shù)減少了4人
C.他們健身后,這20位健身者體重的中位數(shù)位于[90kg,100kg)
D.他們健身后,原來體重在[110kg,120kg]內(nèi)的肥胖者體重都至少減輕了10kg
【答案】D
【解析】
根據(jù)餅圖逐個(gè)選項(xiàng)計(jì)算分析即可.
對(duì)A,易得們健身后,體重在區(qū)間[90kg,100kg)內(nèi)的人數(shù)占比均為,故A正確.
對(duì)B,體重在區(qū)間[100kg,110kg)內(nèi)的人數(shù)減少了,即
人.
故B正確.
對(duì)C,因?yàn)榻∩砗?/span>[80kg,90kg)內(nèi)的人數(shù)占,[90kg,100kg)內(nèi)的人數(shù)占
,故中位數(shù)位于[90kg,100kg).故C正確.
對(duì)D,易舉出反例若原體重在[110kg,120kg]內(nèi)的肥胖者重量為,減肥后為
依然滿足.故D錯(cuò)誤.
故選:D
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
的最大值為
.
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)當(dāng)時(shí),討論函數(shù)
的單調(diào)性;
(Ⅲ)當(dāng)時(shí),令
,是否存在區(qū)間
.使得函數(shù)
在區(qū)間
上的值域?yàn)?/span>
若存在,求實(shí)數(shù)
的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,四邊形
是邊長(zhǎng)為2的正方形,
,
為
的中點(diǎn),點(diǎn)
在
上,
平面
,
在
的延長(zhǎng)線上,且
.
(1)證明:平面
.
(2)過點(diǎn)作
的平行線,與直線
相交于點(diǎn)
,當(dāng)點(diǎn)
在線段
上運(yùn)動(dòng)時(shí),二面角
能否等于
?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中有這樣一個(gè)問題:今有牛、馬、羊食人苗,苗主責(zé)之粟五斗,羊主曰:“我羊食半馬、“馬主曰:“我馬食半牛,”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟、羊主人說:“我羊所吃的禾苗只有馬的一半,”馬主人說:“我馬所吃的禾苗只有牛的一半,“打算按此比例償還,他們各應(yīng)償還多少?該問題中,1斗為10升,則馬主人應(yīng)償還( )升粟?
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線半徑為
的圓
與直線
相切,圓心
在
軸上且在直線
的上方.
(1)求圓的方程;
(2)設(shè)過點(diǎn) 的直線
被圓
截得弦長(zhǎng)等于
,求直線
的方程;
(3)過點(diǎn)的直線與圓交于
兩點(diǎn)(
在
軸上方),問在
軸正半軸上是否存在點(diǎn)
,使得
軸平分
?若存在,求出點(diǎn)
的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
的左、右頂點(diǎn)分別為C、D,且過點(diǎn)
,P是橢圓上異于C、D的任意一點(diǎn),直線PC,PD的斜率之積為
.
(1)求橢圓的方程;
(2)O為坐標(biāo)原點(diǎn),設(shè)直線CP交定直線x = m于點(diǎn)M,當(dāng)m為何值時(shí),為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若對(duì)任意,
恒成立,求
的取值范圍;
(2)若函數(shù)有兩個(gè)不同的零點(diǎn)
,
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定點(diǎn),圓
,點(diǎn)
為圓
上動(dòng)點(diǎn),線段
的垂直平分線交
于點(diǎn)
,記
的軌跡為曲線
.
(1)求曲線的方程;
(2)過點(diǎn)與
作平行直線
和
,分別交曲線
于點(diǎn)
、
和點(diǎn)
、
,求四邊形
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知分別為橢圓
的左、右焦點(diǎn),
為該橢圓的一條垂直于
軸的動(dòng)弦,直線
與
軸交于點(diǎn)
,直線
與直線
的交點(diǎn)為
.
(1)證明:點(diǎn)恒在橢圓
上.
(2)設(shè)直線與橢圓
只有一個(gè)公共點(diǎn)
,直線
與直線
相交于點(diǎn)
,在平面內(nèi)是否存在定點(diǎn)
,使得
恒成立?若存在,求出該點(diǎn)坐標(biāo);若不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com