日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè)數(shù)列共有項(xiàng),記該數(shù)列前項(xiàng)中的最大項(xiàng)為,該數(shù)列后項(xiàng)中的最小項(xiàng)為,

          1)若數(shù)列的通項(xiàng)公式為,求數(shù)列的通項(xiàng)公式;

          2)若數(shù)列滿足,,求數(shù)列的通項(xiàng)公式;

          3)試構(gòu)造一個(gè)數(shù)列,滿足,其中是公差不為零的等差數(shù)列,是等比數(shù)列,使得對(duì)于任意給定的正整數(shù),數(shù)列都是單調(diào)遞增的,并說明理由.

          【答案】1,;(2,;(3

          【解析】

          試題(1)由題意得:因?yàn)?/span>單調(diào)遞增,所以,所以,.本小題目的引導(dǎo)閱讀題意,關(guān)鍵在于確定數(shù)列單調(diào)性(2)本題是逆問題,關(guān)鍵仍是確定數(shù)列單調(diào)性:因?yàn)?/span>,所以,可得,又因?yàn)?/span>,所以單調(diào)遞增,則,,所以,可得是公差為2的等差數(shù)列,3)由上面兩小題可知,構(gòu)造數(shù)列為單調(diào)遞增數(shù)列:等差數(shù)列的公差為正數(shù),等比數(shù)列的首項(xiàng)為負(fù),公比,若等比數(shù)列的首項(xiàng)為正,公比,由(1)知不滿足數(shù)列是單調(diào)遞增的

          試題解析:(1)因?yàn)?/span>單調(diào)遞增,所以,

          所以

          2)根據(jù)題意可知,,因?yàn)?/span>,所以

          可得,又因?yàn)?/span>,所以單調(diào)遞增,

          ,,所以,即,,

          所以是公差為2的等差數(shù)列,,

          3)構(gòu)造,其中,

          下證數(shù)列滿足題意.

          證明:因?yàn)?/span>,所以數(shù)列單調(diào)遞增,

          所以,

          所以,,

          因?yàn)?/span>

          所以數(shù)列單調(diào)遞增,滿足題意.

          (說明:等差數(shù)列的首項(xiàng)任意,公差為正數(shù),同時(shí)等比數(shù)列的首項(xiàng)為負(fù),公比,這樣構(gòu)造的數(shù)列都滿足題意.)

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          1)求函數(shù)的定義域D,并判斷的奇偶性;

          2)如果當(dāng)時(shí),的值域是,求a的值;

          3)對(duì)任意的m,,是否存在,使得,若存在,求出t,若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】“團(tuán)購(gòu)”已經(jīng)滲透到我們每個(gè)人的生活,這離不開快遞行業(yè)的發(fā)展,下表是2013-2017年全國(guó)快遞業(yè)務(wù)量(x億件:精確到0.1)及其增長(zhǎng)速度(y%)的數(shù)據(jù)

          1)試計(jì)算2012年的快遞業(yè)務(wù)量;

          2)分別將2013年,2014年,…,2017年記成年的序號(hào)t12,3,4,5;現(xiàn)已知yt具有線性相關(guān)關(guān)系,試建立y關(guān)于t的回歸直線方程

          3)根據(jù)(2)問中所建立的回歸直線方程,估算2019年的快遞業(yè)務(wù)量

          附:回歸直線的斜率和截距地最小二乘法估計(jì)公式分別為:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為了調(diào)查一款手機(jī)的使用時(shí)間,研究人員對(duì)該款手機(jī)進(jìn)行了相應(yīng)的測(cè)試,將得到的數(shù)據(jù)統(tǒng)計(jì)如下圖所示:

          并對(duì)不同年齡層的市民對(duì)這款手機(jī)的購(gòu)買意愿作出調(diào)查,得到的數(shù)據(jù)如下表所示:

          愿意購(gòu)買該款手機(jī)

          不愿意購(gòu)買該款手機(jī)

          總計(jì)

          40歲以下

          600

          40歲以上

          800

          1000

          總計(jì)

          1200

          1)根據(jù)圖中的數(shù)據(jù),試估計(jì)該款手機(jī)的平均使用時(shí)間;

          2)請(qǐng)將表格中的數(shù)據(jù)補(bǔ)充完整,并根據(jù)表中數(shù)據(jù),判斷是否有999%的把握認(rèn)為愿意購(gòu)買該款手機(jī)市民的年齡有關(guān).

          參考公式:,其中

          參考數(shù)據(jù):

          0.100

          0.050

          0.010

          0.001

          2.706

          3.841

          6.635

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在直三棱柱中,的中點(diǎn),.

          (Ⅰ)求證:平面;

          (Ⅱ)異面直線所成角的余弦值為,求幾何體的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】高三年級(jí)某班50名學(xué)生期中考試數(shù)學(xué)成績(jī)的頻率分布直方圖如圖所示,成績(jī)分組區(qū)間為:.其中a,b,c成等差數(shù)列且.物理成績(jī)統(tǒng)計(jì)如表.(說明:數(shù)學(xué)滿分150分,物理滿分100分)

          分組

          頻數(shù)

          6

          9

          20

          10

          5

          1)根據(jù)頻率分布直方圖,請(qǐng)估計(jì)數(shù)學(xué)成績(jī)的平均分;

          2)根據(jù)物理成績(jī)統(tǒng)計(jì)表,請(qǐng)估計(jì)物理成績(jī)的中位數(shù);

          3)若數(shù)學(xué)成績(jī)不低于140分的為“優(yōu)”,物理成績(jī)不低于90分的為“優(yōu)”,已知本班中至少有一個(gè)“優(yōu)”同學(xué)總數(shù)為6人,從此6人中隨機(jī)抽取3人,記X為抽到兩個(gè)“優(yōu)”的學(xué)生人數(shù),求X的分布列和期望值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓C:=1(a>b>0),點(diǎn)A、B分別是橢圓C的左頂點(diǎn)和上頂點(diǎn),直線AB與圓G:x2+y2(c是橢圓的半焦距)相離,P是直AB上一動(dòng)點(diǎn),過點(diǎn)P作圓G的兩切線,切點(diǎn)分別為M、N.

          (1)若橢圓C經(jīng)過兩點(diǎn)、,求橢圓C的方程;

          (2)當(dāng)c為定值時(shí),求證:直線MN經(jīng)過一定點(diǎn)E并求·的值(O是坐標(biāo)原點(diǎn));

          (3)若存在點(diǎn)P使得△PMN為正三角形,試求橢圓離心率的取值范圍..

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸,以相同的長(zhǎng)度單位建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為,

          (l)設(shè)為參數(shù),若,求直線的參數(shù)方程;

          2)已知直線與曲線交于,設(shè),且,求實(shí)數(shù)的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,在矩形ABCD中,AB4,AD2,ECD的中點(diǎn),將△ADE沿AE折起,得到如圖2所示的四棱錐D1ABCE,其中平面D1AE⊥平面ABCE.

          (1)證明:BE⊥平面D1AE;

          (2)設(shè)FCD1的中點(diǎn),在線段AB上是否存在一點(diǎn)M,使得MF∥平面D1AE,若存在,求出的值;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案