【題目】已知橢圓的離心率為
分別為其左、右焦點(diǎn),
為橢圓
上一點(diǎn),且
的周長(zhǎng)為
.
(1)求橢圓的方程;
(2)過(guò)點(diǎn)作關(guān)于軸
對(duì)稱(chēng)的兩條不同的直線
,若直線
交橢圓
于一點(diǎn)
,直線
交橢圓
于一點(diǎn)
,證明:直線
過(guò)定點(diǎn).
【答案】(1) (2)見(jiàn)證明
【解析】
(1)根據(jù)橢圓的離心率為,及
的周長(zhǎng)為
,列出方程組,求得
的值,即可得到橢圓的方程;
(2)設(shè)直線方程為
,聯(lián)立方程組,利用二次方程根與系數(shù)的關(guān)系,求得
,又由關(guān)于
軸對(duì)稱(chēng)的兩條不同直線
的斜率只和為
,化簡(jiǎn)、求得
,得到直線
方程,即可作出證明.
(1)根據(jù)橢圓的離心率為,及
的周長(zhǎng)為
,
可得,解得
,所以故橢圓
的方程為
.
(2)證明:設(shè)直線方程為
.
聯(lián)立方程組,整理得
,
所以.
因?yàn)殛P(guān)于軸對(duì)稱(chēng)的兩條不同直線
的斜率只和為
,
所以,即
,
所以,
所以,所以
.
所以直線方程為
,所以直線
過(guò)定點(diǎn)
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中直線與拋物線C:
交于A,B兩點(diǎn),且
.
求C的方程;
若D為直線
外一點(diǎn),且
的外心M在C上,求M的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題,
;
.
(1)若為假命題,求實(shí)數(shù)
的取值范圍;
(2))若為真命題,
為假命題,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù).
(1)求的值域;
(2)若存在唯一的整數(shù),使得
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】 (2017·黃岡質(zhì)檢)如圖,在棱長(zhǎng)均為2的正四棱錐P-ABCD中,點(diǎn)E為PC的中點(diǎn),則下列命題正確的是( )
A.BE∥平面PAD,且BE到平面PAD的距離為
B.BE∥平面PAD,且BE到平面PAD的距離為
C.BE與平面PAD不平行,且BE與平面PAD所成的角大于30°
D.BE與平面PAD不平行,且BE與平面PAD所成的角小于30°
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】雙曲線的一條漸近線方程是
,坐標(biāo)原點(diǎn)到直線AB的距離為
,其中
,
.
(1)求雙曲線的方程;
(2)若是雙曲線虛軸在y軸正半軸上的端點(diǎn),過(guò)點(diǎn)B作直線交雙曲線于點(diǎn)M,N,求
時(shí),直線MN的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線與橢圓
有一個(gè)相同的焦點(diǎn),過(guò)點(diǎn)
且與
軸不垂直的直線
與拋物線
交于
,
兩點(diǎn),
關(guān)于
軸的對(duì)稱(chēng)點(diǎn)為
.
(1)求拋物線的方程;
(2)試問(wèn)直線是否過(guò)定點(diǎn)?若是,求出該定點(diǎn)的坐標(biāo);若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若四面體的三組對(duì)棱分別相等,即
,給出下列結(jié)論:
①四面體每組對(duì)棱相互垂直;
②四面體每個(gè)面的面積相等;
③從四面體每個(gè)頂點(diǎn)出發(fā)的三條棱兩兩夾角之和大
而小于
;
④連接四面體每組對(duì)棱中點(diǎn)的線段相互垂直平分.
其中正確結(jié)論的序號(hào)是__________. (寫(xiě)出所有正確結(jié)論的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱中,
,點(diǎn)
分別為棱
的中點(diǎn).
(Ⅰ)求證:∥平面
(Ⅱ)求證:平面平面
;
(Ⅲ)在線段上是否存在一點(diǎn)
,使得直線
與平面
所成的角為300?如果存在,求出線段
的長(zhǎng);如果不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com