日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)),的導(dǎo)數(shù).

          1)當(dāng)時,令,的導(dǎo)數(shù).證明:在區(qū)間存在唯一的極小值點;

          2)已知函數(shù)上單調(diào)遞減,求的取值范圍.

          【答案】1)見解析;(2

          【解析】

          1)設(shè),,注意到上單增,再利用零點存在性定理即可解決;

          2)函數(shù)上單調(diào)遞減,則恒成立,即上恒成立,構(gòu)造函數(shù),求導(dǎo)討論的最值即可.

          1)由已知,,所以

          設(shè),,

          當(dāng)時,單調(diào)遞增,而,且上圖象連續(xù)

          不斷.所以上有唯一零點

          當(dāng)時,;當(dāng)時,;

          單調(diào)遞減,在單調(diào)遞增,故在區(qū)間上存在唯一的極小

          值點,即在區(qū)間上存在唯一的極小值點;

          2)設(shè),,

          單調(diào)遞增,

          ,從而,

          因為函數(shù)上單調(diào)遞減,

          上恒成立,

          ,

          ,

          上單調(diào)遞減,

          當(dāng)時,,則上單調(diào)遞減,,符合題意.

          當(dāng)時,上單調(diào)遞減,

          所以一定存在,

          當(dāng)時,,上單調(diào)遞增,

          與題意不符,舍去.

          綜上,的取值范圍是

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】2020年春節(jié)期間,新型冠狀病毒(2019nCoV)疫情牽動每一個中國人的心,危難時刻全國人民眾志成城.共克時艱,為疫區(qū)助力.我國SQ市共100家商家及個人為緩解湖北省抗疫消毒物資壓力,募捐價值百萬的物資對口輸送湖北省H市.

          1)現(xiàn)對100家商家抽取5家,其中2家來自A地,3家來自B地,從選中的這5家中,選出3家進行調(diào)研.求選出3家中1家來自A地,2家來自B地的概率.

          2)該市一商家考慮增加先進生產(chǎn)技術(shù)投入,該商家欲預(yù)測先進生產(chǎn)技術(shù)投入為49千元的月產(chǎn)增量.現(xiàn)用以往的先進技術(shù)投入xi(千元)與月產(chǎn)增量yi(千件)(i1,2,3,…,8)的數(shù)據(jù)繪制散點圖,由散點圖的樣本點分布,可以認為樣本點集中在曲線的附近,且:,,,其中,,根據(jù)所給的統(tǒng)計量,求y關(guān)于x回歸方程,并預(yù)測先進生產(chǎn)技術(shù)投入為49千元時的月產(chǎn)增量.

          附:對于一組數(shù)據(jù)(u1v1)(u2,v2),其回歸直線vα+βu的斜率和截距的最小二乘法估計分別為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).(是自然對數(shù)的底數(shù))

          1)求的單調(diào)遞減區(qū)間;

          2)記,若,試討論上的零點個數(shù).(參考數(shù)據(jù):

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)有極值,且導(dǎo)函數(shù)的極值點是的零點.

          1)求關(guān)于的函數(shù)關(guān)系式,并寫出定義域;

          2)證明:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的普通方程為:,以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,正方形的頂點都在上,且逆時針依次排列,點的極坐標(biāo)為

          1)寫出曲線的參數(shù)方程,及點的直角坐標(biāo);

          2)設(shè)為橢圓上的任意一點,求:的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知在中,角的對邊分別為,且.

          (1)求的值;

          (2)若,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某購物網(wǎng)站開展一種商品的預(yù)約購買,規(guī)定每個手機號只能預(yù)約一次,預(yù)約后通過搖號的方式?jīng)Q定能否成功購買到該商品.規(guī)則如下:(。⿹u號的初始中簽率為;(ⅱ)當(dāng)中簽率不超過時,可借助“好友助力”活動增加中簽率,每邀請到一位好友參與“好友助力”活動可使中簽率增加.為了使中簽率超過,則至少需要邀請________位好友參與到“好友助力”活動.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】《九章算術(shù)》中勾股容方問題:今有勾五步,股十二步,問勾中容方幾何?魏晉時期數(shù)學(xué)家劉徽在其《九章算術(shù)注》中利用出入相補原理給出了這個問題的一般解法:如圖1,用對角線將長和寬分別為的矩形分成兩個直角三角形,每個直角三角形再分成一個內(nèi)接正方形(黃)和兩個小直角三角形(朱、青).將三種顏色的圖形進行重組,得到如圖2所示的矩形.該矩形長為,寬為內(nèi)接正方形的邊長.由劉徽構(gòu)造的圖形還可以得到許多重要的結(jié)論,如圖3.設(shè)為斜邊的中點,作直角三角形的內(nèi)接正方形對角線,過點于點,則下列推理正確的是(

          ①由圖1和圖2面積相等得

          ②由可得;

          ③由可得;

          ④由可得

          A.①②③④B.①②④C.②③④D.①③

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知,.

          (1)當(dāng)時,求函數(shù)圖象在處的切線方程;

          (2)若對任意,不等式恒成立,求的取值范圍;

          (3)若存在極大值和極小值,且極大值小于極小值,求的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案