日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)f(x)= x2﹣ax+(3﹣a)lnx,a∈R.
          (1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線2x﹣y+1=0垂直,求a的值;
          (2)設(shè)f(x)有兩個(gè)極值點(diǎn)x1 , x2 , 且x1<x2 , 求證:﹣5﹣f(x1)<f(x2)<﹣

          【答案】
          (1)解:∵f′(x)= ,∴f′(1)=4﹣2a,

          由題意4﹣2a=﹣ ,解得:a=


          (2)解:證明:由題意,x1,x2為f′(x)=0的兩根,

          ,∴2<a<3,

          由x1+x2=a>2,x1x2=3﹣a<1,知x1<1<x2,

          結(jié)合單調(diào)性有f(x2)<f(1)= ﹣a<﹣

          又f(x1)+f(x2)= + )﹣a(x1+x2)+(3﹣a)lnx1x2=﹣ a2+a﹣3+(3﹣a)ln(3﹣a),

          設(shè)h(a)=﹣ a2+a﹣3+(3﹣a)ln(3﹣a),a∈(2,3),

          則h′(a)=﹣a﹣ln(3﹣a),

          h″(a)= >0,故h′(a)在(2,3)遞增,又h′(2)=﹣2<0,

          a→3時(shí),h′(a)→+∞,

          a0∈(2,3),當(dāng)a∈(2,a0)時(shí),h(a)遞減,當(dāng)a∈(a0,3)時(shí),h(a)遞增,

          ∴h(a)min=h(a0)=﹣ +a0﹣3+(3﹣a0)(﹣a0)= ﹣2a0﹣3>﹣5,

          a∈(2,3),h(a)>﹣5,

          綜上,﹣5﹣f(x1)<f(x2)<﹣


          【解析】(1)求出函數(shù)的導(dǎo)數(shù),根據(jù)f′(1)的值,求出a的值;(2)根據(jù)x1 , x2是方程f′(x)=0的根,得到關(guān)于a的不等式組,求出a的范圍,求出f(x1)+f(x2)的表達(dá)式,設(shè)h(a)=﹣ a2+a﹣3+(3﹣a)ln(3﹣a),a∈(2,3),根據(jù)函數(shù)的單調(diào)性證明即可.
          【考點(diǎn)精析】本題主要考查了函數(shù)的極值與導(dǎo)數(shù)的相關(guān)知識(shí)點(diǎn),需要掌握求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值才能正確解答此題.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】函數(shù)f(x)= 的定義域?yàn)椋?/span>
          A.(1,2)∪(2,3)
          B.(﹣∞,1)∪(3,+∞)
          C.(1,3)
          D.[1,3]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)p:實(shí)數(shù)x滿足x2﹣4ax+3a2<0,其中a>0; q:實(shí)數(shù)x滿足 <0.
          (1)若a=1,且p∨q為真,求實(shí)數(shù)x的取值范圍;
          (2)若p是q的必要不充分條件,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】過(guò)點(diǎn)作曲線其中為自然對(duì)數(shù)的底數(shù)的切線,切點(diǎn)為設(shè)軸上的投影是點(diǎn),過(guò)點(diǎn)再作曲線的切線,切點(diǎn)為,設(shè)軸上的投影是點(diǎn),依次下去得到第個(gè)切點(diǎn),則點(diǎn)的坐標(biāo)為________

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系中,已知橢圓的左右頂點(diǎn)為,右焦點(diǎn)為,一條準(zhǔn)線方程是,點(diǎn)為橢圓上異于的兩點(diǎn),點(diǎn)的中點(diǎn)

          (1)求橢圓的標(biāo)準(zhǔn)方程;

          (2)直線交直線于點(diǎn),記直線的斜率為,直線的斜率為,求證:為定值;

          (3)若,求直線斜率的取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)函數(shù)f(x)=|2x+2|﹣|x﹣2|. (Ⅰ)求不等式f(x)>2的解集;
          (Ⅱ)若x∈R,f(x)≥t2 t恒成立,求實(shí)數(shù)t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》有如下問(wèn)題:“今有人持金出五關(guān),前關(guān)二而稅一,次關(guān)三而稅一,次關(guān)四而稅一,次關(guān)五而稅一,次關(guān)六而稅一,并五關(guān)所稅,適重一斤,問(wèn)本持金幾何”其意思為“今有人持金出五關(guān),第1關(guān)收稅金 ,第2關(guān)收稅金為剩余金的 ,第3關(guān)收稅金為剩余金的 ,第4關(guān)收稅金為剩余金的 ,第5關(guān)收稅金為剩余金的 ,5關(guān)所收稅金之和,恰好重1斤,問(wèn)原來(lái)持金多少?”若將題中“5關(guān)所收稅金之和,恰好重1斤,問(wèn)原來(lái)持金多少?”改成假設(shè)這個(gè)原來(lái)持金為x,按此規(guī)律通過(guò)第8關(guān),則第8關(guān)需收稅金為x.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓:的四個(gè)頂點(diǎn)圍成的四邊形的面積為,原點(diǎn)到直線的距離為.

          (1)求橢圓的方程;

          (2)已知定點(diǎn),是否存在過(guò)的直線,使與橢圓交于,兩點(diǎn),且以為直徑的圓過(guò)橢圓的左頂點(diǎn)?若存在,求出的方程:若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)=sinωx﹣ cosωx(ω>0),若方程f(x)=﹣1在(0,π)上有且只有四個(gè)實(shí)數(shù)根,則實(shí)數(shù)ω的取值范圍為(
          A.( , ]
          B.( , ]
          C.( , ]
          D.( , ]

          查看答案和解析>>

          同步練習(xí)冊(cè)答案