日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知橢圓的右焦點(diǎn)為F,過F的直線(非x軸)交橢圓于MN兩點(diǎn),右準(zhǔn)線x軸于點(diǎn)K,左頂點(diǎn)為A

              (Ⅰ)求證:KF平分∠MKN;

             (Ⅱ)直線AM、AN分別交準(zhǔn)線于點(diǎn)P、Q,

          設(shè)直線MN的傾斜角為,試用表示

          線段PQ的長(zhǎng)度|PQ|,并求|PQ|的最小值.

           

          【答案】

          時(shí),

          【解析】解:(Ⅰ)法一:作MM1M1,

          NN1N1,則,

          又由橢圓的第二定義有

          ∴∠KMM1=∠KNN1,

          即∠MKF=∠NKF

          KF平分∠MKN

          法二:設(shè)直線MN的方程為.

          設(shè)M、N的坐標(biāo)分別為,

          設(shè)KMKN的斜率分別為,顯然只需證即可.

            ∴

           得證.

          (Ⅱ)由A,M,P三點(diǎn)共線可求出P點(diǎn)的坐標(biāo)為

          A,N,Q三點(diǎn)共線可求出Q點(diǎn)坐標(biāo)為,

          設(shè)直線MN的方程為.由

           

          則:

          又直線MN的傾斜角為,則,∴

          時(shí), 

           

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在直角坐標(biāo)系xOy中,已知橢圓C:
          y2
          a2
          +
          y2
          b2
          =1(a>b>0)的離心率e=
          3
          2
          ,左右兩個(gè)焦分別為F1、F2.過右焦點(diǎn)F2且與軸垂直的
          直線與橢圓C相交M、N兩點(diǎn),且|MN|=1.
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)設(shè)橢圓C的左頂點(diǎn)為A,下頂點(diǎn)為B,動(dòng)點(diǎn)P滿足
          PA
          AB
          =m-4,(m∈R)試求點(diǎn)P的軌跡方程,使點(diǎn)B關(guān)于該軌跡的對(duì)稱點(diǎn)落在橢圓C上.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:廣東省揭陽(yáng)市2007年高中畢業(yè)班第一次高考模擬考試題(文科) 題型:044

          如圖,在直角坐標(biāo)系xOy中,已知橢圓的離心率e=,

          左右兩個(gè)焦分別為F1、F2.過右焦點(diǎn)F2且與x軸垂直的直線與橢圓C相交M、N兩點(diǎn),且|MN|=2.

          (Ⅰ)求橢圓C的方程;

          (Ⅱ)設(shè)橢圓C的一個(gè)頂點(diǎn)為B(0,-b),是否存在直線l:y=x+m,使點(diǎn)B關(guān)于直線l的對(duì)稱點(diǎn)落在橢圓C上,若存在,求出直線l的方程,若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:廣東省揭陽(yáng)市2007年高中畢業(yè)班第一次高考模擬考試題(理科) 題型:044

          如圖,在直角坐標(biāo)系xOy中,已知橢圓的離心率e=,左右兩個(gè)焦分別為F1、F2.過右焦點(diǎn)F2且與x軸垂直的直線與橢圓C相交M、N兩點(diǎn),且|MN|=1.

          (Ⅰ)求橢圓C的方程;

          (Ⅱ)設(shè)橢圓C的左頂點(diǎn)為A,下頂點(diǎn)為B,動(dòng)點(diǎn)P滿足,()試求點(diǎn)P的軌跡方程,使點(diǎn)B關(guān)于該軌跡的對(duì)稱點(diǎn)落在橢圓C上.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在直角坐標(biāo)系中,已知橢圓的離心率e=,左右兩個(gè)焦分別為.過右焦點(diǎn)且與軸垂直的

          直線與橢圓相交M、N兩點(diǎn),且|MN|=1.

          (Ⅰ) 求橢圓的方程;

          (Ⅱ) 設(shè)橢圓的左頂點(diǎn)為A,下頂點(diǎn)為B,動(dòng)點(diǎn)P滿足,

          )試求點(diǎn)P的軌跡方程,使點(diǎn)B關(guān)于該軌跡的對(duì)稱點(diǎn)落在橢圓上.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在直角坐標(biāo)系中,已知橢圓的離心率e=,左右兩個(gè)焦分別為.過右焦點(diǎn)且與軸垂直的

          直線與橢圓相交M、N兩點(diǎn),且|MN|=1.

          (Ⅰ) 求橢圓的方程;

          (Ⅱ) 設(shè)橢圓的左頂點(diǎn)為A,下頂點(diǎn)為B,動(dòng)點(diǎn)P滿足

          )試求點(diǎn)P的軌跡方程,使點(diǎn)B關(guān)于該軌跡的對(duì)稱點(diǎn)落在橢圓上.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案