日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 平面α平面β的一個(gè)充分條件是( 。
          A.存在一條直線a,aα,aβ
          B.存在一條直線a,a?α,aβ
          C.存在兩條平行直線a,b,a?α,b?β,aβ,bα
          D.存在兩條異面直線a,b,a?α,b?β,aβ,bα
          證明:對(duì)于A,一條直線與兩個(gè)平面都平行,兩個(gè)平面不一定平行.故A不對(duì);
          對(duì)于B,一個(gè)平面中的一條直線平行于另一個(gè)平面,兩個(gè)平面不一定平行,故B不對(duì);
          對(duì)于C,兩個(gè)平面中的兩條直線平行,不能保證兩個(gè)平面平行,故C不對(duì);
          對(duì)于D,兩個(gè)平面中的兩條互相異面的直線分別平行于另一個(gè)平面,可以保證兩個(gè)平面平行,故D正確.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在矩形ABCD中,已知AB=2AD=4,E為AB的中點(diǎn),現(xiàn)將△AED沿DE折起,使點(diǎn)A到點(diǎn)P處,滿足PB=PC,設(shè)M、H分別為PC、DE的中點(diǎn).
          (1)求證:BM平面PDE;
          (2)線段BC上是否存在一點(diǎn)N,使BC⊥平面PHN?試證明你的結(jié)論;
          (3)求△PBC的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖在四棱錐P-ABCD中,底面ABCD是平行四邊形,側(cè)棱PD⊥底面ABCD,PD=BC,E是PC的中點(diǎn),求證:PA平面EDB.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (文科)如圖,正方體ABCD-A1B1C1D1中,M,N,E,F(xiàn)分別是棱A1B1,A1D1,B1C1,C1D1的中點(diǎn),
          求證:平面AMN平面EFDB.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在長方體ABCD-A1B1C1D1中,E是DD1的中點(diǎn).
          (1)求證:BD1平面ACE
          (2)過直線BD1是否存在與平面ACE平行的平面,若存在,請(qǐng)作出這個(gè)平面與長方體ABCD-A1B1C1D1的交線(請(qǐng)?jiān)诖痤}卡上用黑色碳素筆和直尺作圖),并證明這兩個(gè)平面平行;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          如圖,ABCD-A1B1C1D1為正方體,下面結(jié)論中正確的結(jié)論是______.(把你認(rèn)為正確的結(jié)論都填上)
          ①BD平面CB1D1
          ②AC1⊥平面CB1D1;
          ③過點(diǎn)A1與異面直線AD和CB1成90°角的直線有2條.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (y的的7•海南)如圖,在三棱錐S-ABC中,側(cè)面SAB與側(cè)面SAC均為等邊三角形,∠BAC=9的°,O為BC中點(diǎn).
          (Ⅰ)證明:SO⊥平面ABC;
          (Ⅱ)求二面角A-SC-B的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖所示,在四棱錐P-ABCD中,PD⊥平面ABCD,AD⊥CD,AD=CD,DB平分∠ADC,E為PC的中點(diǎn).求證:
          (1)PA平面BDE;
          (2)AC⊥平面PBD.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知四棱錐P-ABCD,底面是邊長為2的正方形,PA⊥底面ABCD,PA=2
          2
          ,求直線PA與底面ABCD所成角.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案