日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 16、如圖,四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD為直角梯形,∠ABC=∠BAD=90°,AD>BC.E,F(xiàn)分別為棱AB,PC的中點(diǎn).
          (Ⅰ)求證:PE⊥BC;
          (Ⅱ)求證:EF∥平面PAD;
          分析:(Ⅰ)由PA⊥平面ABCD,得PA⊥BC,又BC⊥AB,由線面垂直的判定證明BC⊥平面PAB,從而有BC⊥PE;
          (Ⅱ)由FG∥平面PAD,EG∥平面PAD,平面EFG∥平面PAD,EF∥平面PAD.
          解答:證明:解(Ⅰ)∵PA⊥平面ABCD,BC?平面ABCD∴PA⊥BC
          ∵∠ABC=90°,
          ∴BC⊥AB,
          ∵PA∩AB=A
          ∴BC⊥平面PAB
          ∵E為AB中點(diǎn),∴PE?平面PAB.
          ∴BC⊥PE.

          (Ⅱ)證明:取CD中點(diǎn)G,連接FG,EG,
          ∵F為PC中點(diǎn),
          ∴FG∥PD
          ∵FG?平面PAD,PD?平面PAD
          ∴FG∥平面PAD;
          同理,EG∥平面PAD
          ∵FG∩EG=G,(沒有扣1分)平面EFG∥平面PAD
          ∴EF∥平面PAD.
          點(diǎn)評:本題主要通過線線、線面、面面之間的平行關(guān)系的轉(zhuǎn)化和垂直關(guān)系的關(guān)系,來考查其判定定理和性質(zhì)定理.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
          E是PC的中點(diǎn).求證:
          (Ⅰ)CD⊥AE;
          (Ⅱ)PD⊥平面ABE.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,四棱錐P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,側(cè)面PAD⊥底面ABCD,且△PAD為等腰直角三角形,∠APD=90°,M為AP的中點(diǎn).
          (1)求證:AD⊥PB;
          (2)求三棱錐P-MBD的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,四棱錐P-ABCD的底面ABCD是矩形,AB=2,BC=
          2
          ,且側(cè)面PAB是正三角形,平面PAB⊥平面ABCD.
          (1)求證:PD⊥AC;
          (2)在棱PA上是否存在一點(diǎn)E,使得二面角E-BD-A的大小為45°,若存在,試求
          AE
          AP
          的值,若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥底面ABCD,且PA=AB=1,AD=
          3
          ,點(diǎn)F是PB中點(diǎn).
          (Ⅰ)若E為BC中點(diǎn),證明:EF∥平面PAC;
          (Ⅱ)若E是BC邊上任一點(diǎn),證明:PE⊥AF;
          (Ⅲ)若BE=
          3
          3
          ,求直線PA與平面PDE所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,四棱錐P-ABCD,PA⊥平面ABCD,ABCD是直角梯形,DA⊥AB,CB⊥AB,PA=2AD=BC=2,AB=2
          2
          ,設(shè)PC與AD的夾角為θ.
          (1)求點(diǎn)A到平面PBD的距離;
          (2)求θ的大小;當(dāng)平面ABCD內(nèi)有一個(gè)動點(diǎn)Q始終滿足PQ與AD的夾角為θ,求動點(diǎn)Q的軌跡方程.

          查看答案和解析>>

          同步練習(xí)冊答案