【題目】中國國際智能產(chǎn)業(yè)博覽會(智博會)每年在重慶市舉辦一屆,每年參加服務(wù)的志愿者分“嘉賓”、“法醫(yī)”等若干小組年底,來自重慶大學(xué)、西南大學(xué)、重慶醫(yī)科大學(xué)、西南政法大學(xué)的500名學(xué)生在重慶科技館多功能廳參加了“志愿者培訓(xùn)”,如圖是四所大學(xué)參加培訓(xùn)人數(shù)的不完整條形統(tǒng)計(jì)圖,現(xiàn)用分層抽樣的方法從中抽出50人作為2019年中國國際智博會服務(wù)的志愿者.
(1)若“嘉賓”小組需要2名志愿者,求這2人分別來自不同大學(xué)的概率(結(jié)果用分?jǐn)?shù)表示)
(2)若“法醫(yī)”小組的3名志愿者只能從重慶醫(yī)科大學(xué)或西南政法大學(xué)抽出,用表示抽出志愿者來自重慶醫(yī)科大學(xué)的人數(shù),求
的分布列和數(shù)學(xué)期望.
【答案】(1);(2)見解析
【解析】
(1)先確定樣本人中來自重慶大學(xué)、西南大學(xué)、重慶醫(yī)科大學(xué)、西南政法大學(xué)各學(xué)校的人數(shù),在
人中任選
人的選法種數(shù)中減去
人選自同一個學(xué)校的選法種數(shù),即為
人來自不同學(xué)校的選法種數(shù),再利用古典概型的概率公式可得出所求事件的概率;
(2)先確定樣本中重慶醫(yī)科大學(xué)、西南政法大學(xué)人數(shù)分別為、
,得出
的可能取值為
、
、
、
,再根據(jù)超幾何概率分布列公式可得出隨機(jī)變量
的分布列,并算出隨機(jī)變量
的數(shù)學(xué)期望。
(1)由題意知:用分層抽樣從重慶大學(xué)、西南大學(xué)、重慶醫(yī)科大學(xué)、西南政法大學(xué)抽取的志愿者分別為20,15,10,5,
所求概率為:;
(2)的可能取值為0,1,2,3,
,
,
,
,
的分布列為:
0 | 1 | 2 | 3 | |
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,圓.以極點(diǎn)
為原點(diǎn),極軸為
軸正半軸建立直角坐標(biāo)系
,直線
經(jīng)過點(diǎn)
且傾斜角為
.
求圓
的直角坐標(biāo)方程和直線
的參數(shù)方程;
已知直線
與圓
交與
,
,滿足
為
的中點(diǎn),求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在
軸上,它的一個頂點(diǎn)恰好是拋物線
的焦點(diǎn),離心率等于
.
(1)求橢圓的方程;
(2)過橢圓的右焦點(diǎn)
作直線
交橢圓
于
、
兩點(diǎn),交
軸于
點(diǎn),若
,
,求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】電子計(jì)算機(jī)誕生于20世紀(jì)中葉,是人類最偉大的技術(shù)發(fā)明之一.計(jì)算機(jī)利用二進(jìn)制存儲信息,其中最基本單位是“位(bit)”,1位只能存放2種不同的信息:0或l,分別通過電路的斷或通實(shí)現(xiàn).“字節(jié)(Byte)”是更大的存儲單位,1Byte=8bit,因此1字節(jié)可存放從00000000(2)至11111111(2)共256種不同的信息.將這256個二進(jìn)制數(shù)中,所有恰有相鄰兩位數(shù)是1其余各位數(shù)均是0的所有數(shù)相加,則計(jì)算結(jié)果用十進(jìn)制表示為
A. 254B. 381C. 510D. 765
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于無窮數(shù)列,“若存在
,必有
”,則稱數(shù)列
具有
性質(zhì).
(1)若數(shù)列滿足
,判斷數(shù)列
是否具有
性質(zhì)?是否具有
性質(zhì)?
(2)對于無窮數(shù)列,設(shè)
,求證:若數(shù)列
具有
性質(zhì),則
必為有限集;
(3)已知是各項(xiàng)均為正整數(shù)的數(shù)列,且
既具有
性質(zhì),又具有
性質(zhì),是否存在正整數(shù)
,
,使得
,
,
,…,
,…成等差數(shù)列.若存在,請加以證明;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱柱中,底面
是等腰三角形,且
,側(cè)面
是菱形,
,平面
平面
,點(diǎn)
是
的中點(diǎn).
(1)求證:;
(2)求直線與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面
平面
,
,點(diǎn)
分別為
的中點(diǎn).
(1)求證:平面平面EFD;
(2)求點(diǎn)到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線
的參數(shù)方程為
為參數(shù)),以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求曲線的直角坐標(biāo)方程與直線
的極坐標(biāo)方程;
(2)若射線與曲線
交于點(diǎn)
(不同于原點(diǎn)),與直線
交于點(diǎn)
,直線
與極軸所在直線交于點(diǎn)
.求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為踐行“綠水青山就是金山銀山”的發(fā)展理念和提高生態(tài)環(huán)境的保護(hù)意識,高二年級準(zhǔn)備成立一個環(huán)境保護(hù)興趣小組.該年級理科班有男生400人,女生200人;文科班有男生100人,女生300人.現(xiàn)按男、女用分層抽樣從理科生中抽取6人,按男、女分層抽樣從文科生中抽取4人,組成環(huán)境保護(hù)興趣小組,再從這10人的興趣小組中抽出4人參加學(xué)校的環(huán)保知識競賽.
(1)設(shè)事件為“選出的這4個人中要求有兩個男生兩個女生,而且這兩個男生必須文、理科生都有”,求事件
發(fā)生的概率;
(2)用表示抽取的4人中文科女生的人數(shù),求
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com