日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)處的切線的斜率為.

          (1)求的值,并討論上的單調(diào)性;

          (2)設(shè)若對(duì)任意,總存在使得成立,求的取值范圍.

          【答案】(1)函數(shù)上單調(diào)遞減,在上單調(diào)遞增;(2).

          【解析】

          試題分析:(1)運(yùn)用“函數(shù)在某點(diǎn)的切線斜率,就是該點(diǎn)的導(dǎo)數(shù)值”,確定直線的斜率。通過研究導(dǎo)數(shù)值的正負(fù)情況,明確函數(shù)的單調(diào)區(qū)間。

          (2)不等式恒成立問題,一般的要轉(zhuǎn)化成求函數(shù)的最值問題。

          試題解析:

          (1)函數(shù)處的切線的斜率為

          解得:;

          此時(shí),,當(dāng)時(shí),,當(dāng)時(shí),

          ,函數(shù)上單調(diào)遞減,在上單調(diào)遞增.

          (2)當(dāng)時(shí),單調(diào)遞增,

          則只需上恒成立即可,

          ①當(dāng)時(shí),上恒成立,即上單調(diào)遞增,又

          上恒成立,故時(shí)成立.

          ②當(dāng)時(shí),若,則此時(shí)單調(diào)遞減,

          故當(dāng)時(shí)不成立.

          綜上

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】動(dòng)物園需要用籬笆圍成兩個(gè)面積均為50 的長方形熊貓居室,如圖所示,以墻為一邊(墻不需要籬笆),并共用垂直于墻的一條邊,為了保證活動(dòng)空間,垂直于墻的邊長不小于2m,每個(gè)長方形平行于墻的邊長也不小于2m

          1)設(shè)所用籬笆的總長度為l,垂直于墻的邊長為x.試用解析式將l表示成x的函數(shù),并確定這個(gè)函數(shù)的定義域;

          2)怎樣圍才能使得所用籬笆的總長度最?籬笆的總長度最小是多少?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,已知的等比中項(xiàng)為,且的等差中項(xiàng)為1,求數(shù)列{an}的通項(xiàng)公式。

          【答案】.

          【解析】

          設(shè)等差數(shù)列{an}的首項(xiàng)為a1,公差為d,運(yùn)用等差中項(xiàng)和等比中項(xiàng)的定義,利用等差數(shù)列的求和公式,代入可求a1,d,解方程可求通項(xiàng)an

          設(shè)等差數(shù)列{an}的首項(xiàng),公差為,則通項(xiàng)為,

          項(xiàng)和為,依題意有,

          其中,由此可得,

          整理得, 解方程組得,

          由此得;或.

          經(jīng)檢驗(yàn)均合題意.

          所以所求等差數(shù)列的通項(xiàng)公式為.

          【點(diǎn)睛】

          本題主要考查了等差數(shù)列的通項(xiàng)公式和性質(zhì)及等比數(shù)列中項(xiàng)的性質(zhì),數(shù)列通項(xiàng)的求法中有常見的已知的關(guān)系,求表達(dá)式,一般是寫出做差得通項(xiàng),但是這種方法需要檢驗(yàn)n=1時(shí)通項(xiàng)公式是否適用。

          型】解答
          結(jié)束】
          20

          【題目】等差數(shù)列{an}的各項(xiàng)均為正數(shù),a1=3,前n項(xiàng)和為Sn,{bn}為等比數(shù)列,b1=1,且b2S2=64,b3S3=960.

          (1)anbn

          (2)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為推行新課堂教學(xué)法,某化學(xué)老師分別用傳統(tǒng)教學(xué)和新課堂兩種不同的教學(xué)方式,在甲、乙兩個(gè)平行班級(jí)進(jìn)行教學(xué)實(shí)驗(yàn),為了比較教學(xué)效果,期中考試后,分別從兩個(gè)班級(jí)中各隨機(jī)抽取20名學(xué)生的成績進(jìn)行統(tǒng)計(jì),結(jié)果如下表:記成績不低于70分者為成績優(yōu)良”.

          分?jǐn)?shù)

          [50,59)

          [60,69)

          [70,79)

          [80,89)

          [90,100]

          甲班頻數(shù)

          5

          6

          4

          4

          1

          乙班頻數(shù)

          1

          3

          6

          5

          5

          (1)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面2×2列聯(lián)表,并判斷成績優(yōu)良與教學(xué)方式是否有關(guān)”?

          甲班

          乙班

          總計(jì)

          成績優(yōu)良

          成績不優(yōu)良

          總計(jì)

          現(xiàn)從上述40人中,學(xué)校按成績是否優(yōu)良采用分層抽樣的方法抽取8人進(jìn)行考核.在這8人中,記成績不優(yōu)良的乙班人數(shù)為,求的分布列及數(shù)學(xué)期望.

          附: 臨界值表

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】隨著生活水平的提高,越來越多的人參與了潛水這項(xiàng)活動(dòng)。某潛水中心調(diào)查了100名男姓與100名女姓下潛至距離水面5米時(shí)是否會(huì)耳鳴,下圖為其等高條形圖:

          繪出2×2列聯(lián)表;

          ②根據(jù)列聯(lián)表的獨(dú)立性檢驗(yàn),能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為耳鳴與性別有關(guān)系?

          0.025

          0.010

          0.005

          0.001

          5.024

          6.635

          7.879

          10.828

          附:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知直線平面,直線平面,有以下四個(gè)命題:( )

          ;②;③;④;

          其中正確命題的序號(hào)為

          A. ②④ B. ③④ C. ①③ D. ①④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=x2﹣ax﹣alnx(a∈R),g(x)=﹣x3+ x2+2x﹣6,g(x)在[1,4]上的最大值為b,當(dāng)x∈[1,+∞)時(shí),f(x)≥b恒成立,則a的取值范圍(
          A.a≤2
          B.a≤1
          C.a≤﹣1
          D.a≤0

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知關(guān)于x的不等式x2﹣4x+t≤0的解集為A,若(﹣∞,t]∩A≠,則實(shí)數(shù)t的取值范圍是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若向量 = =(sinωx,0),其中ω>0,記函數(shù)f(x)=( + .若函數(shù)f(x)的圖象與直線y=m(m為常數(shù))相切,并且切點(diǎn)的橫坐標(biāo)依次成公差是π的等差數(shù)列.
          (Ⅰ)求f(x)的表達(dá)式及m的值;
          (Ⅱ)將f(x)的圖象向左平移 個(gè)單位,再將得到的圖象上各點(diǎn)的縱坐標(biāo)變?yōu)樵瓉淼?倍(橫坐標(biāo)不變)后得到y(tǒng)=g(x)的圖象,求y=g(x)在 上的值域.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案