日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 數(shù)列{an}滿足Sn=2n-an(n∈N*).
          (1)計(jì)算a1,a2,a3,a4,并由此猜想通項(xiàng)公式an;
          (2)用數(shù)學(xué)歸納法證明(1)中的猜想.
          (1)a1=1,a2= a3= a4= an=(n∈N*)(2)證明略
          (1)解 當(dāng)n=1時(shí),a1=S1=2-a1,∴a1=1.
          當(dāng)n=2時(shí),a1+a2=S2=2×2-a2,∴a2=.
          當(dāng)n=3時(shí),a1+a2+a3=S3=2×3-a3,∴a3=.
          當(dāng)n=4時(shí),a1+a2+a3+a4=S4=2×4-a4,∴a4=.
          由此猜想an=(n∈N*).
          (2)證明 ①當(dāng)n=1時(shí),a1=1,結(jié)論成立.
          ②假設(shè)n=k(k≥1且k∈N*)時(shí),結(jié)論成立,即ak=,
          那么n=k+1時(shí),
          ak+1=Sk+1-Sk=2(k+1)-ak+1-2k+ak=2+ak-ak+1.
          ∴2ak+1=2+ak,
          ∴ak+1===,
          這表明n=k+1時(shí),結(jié)論成立,
          由①②知猜想an=(n∈N*)成立.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          試證明:不論正數(shù)a、b、c是等差數(shù)列還是等比數(shù)列,當(dāng)n>1,n∈N*ab、c互不相等時(shí),均有:an+cn>2bn.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          用數(shù)學(xué)歸納法證明:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (湖北理21)(本小題滿分14分)
          已知m,n為正整數(shù).
          (Ⅰ)用數(shù)學(xué)歸納法證明:當(dāng)x>-1時(shí),(1+x)m≥1+mx;
          (Ⅱ)對(duì)于n≥6,已知,求證m=1,1,2…,n;
          (Ⅲ)求出滿足等式3n+4m+…+(n+2)m=(n+3)n的所有正整數(shù)n.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (12分)
          是否存在常數(shù)a,b,使等式對(duì)于一切都成立?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知等差數(shù)列{an}的公差d大于0,且a2,a5是方程x2-12x+27=0的兩根,數(shù)列{bn}的前n項(xiàng)和為Tn,且Tn=1-.
          (1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
          (2)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,試比較與Sn+1的大小,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          設(shè)為常數(shù),且
          小題1:證明對(duì)任意
          小題2:假設(shè)對(duì)任意,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          用數(shù)學(xué)歸納法證明不等式成立,起始值至少應(yīng)取為( )
          A.7B.8C.9D.10

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知

          查看答案和解析>>

          同步練習(xí)冊(cè)答案