日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知:一個圓錐的底面半徑為R=2,高為H=4,在其中有一個高為x的內(nèi)接圓柱.
          (1)寫出圓柱的側(cè)面積關(guān)于x的函數(shù);
          (2)x為何值時,圓柱的側(cè)面積最大.
          【答案】分析:(1)畫出圓錐的軸截面,將空間問題轉(zhuǎn)化為平面問題,然后根據(jù)相似三角形的性質(zhì)和比例的性質(zhì),得出內(nèi)接圓柱底面半徑r與x關(guān)系式,利用由圓柱的側(cè)面積公式,得到函數(shù)解析式,
          (2)根據(jù)二次函數(shù)的性質(zhì)易得到其最大值,及對應(yīng)的x的值.
          解答:解:(1)設(shè)內(nèi)接圓柱底面半徑為r,
          S圓柱側(cè)=2πrx①,∵=
          ②代入①得S圓柱側(cè)=2πx=π(-x2+4x)(0<x<4)
          (2)S圓柱側(cè)=-π(x-2)2+4π,所以x=2時,圓柱的側(cè)面積最大,最大為4π
          點評:本題考查的知識點是圓錐的幾何特征及圓錐及圓柱的側(cè)面積公式,將空間問題轉(zhuǎn)化為平面問題是解答立體幾何題最常用的思路.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知一個圓錐的底面半徑為R,高為h,在其中有一個高為x的內(nèi)接圓柱(其中R,h均為常數(shù)).
          (1)當(dāng)x=
          23
          h時,求內(nèi)接圓柱上方的圓錐的體積V;
          (2)當(dāng)x為何值時,這個內(nèi)接圓柱的側(cè)面積最大?并求出其最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知:一個圓錐的底面半徑為R=2,高為H=4,在其中有一個高為x的內(nèi)接圓柱.
          (1)寫出圓柱的側(cè)面積關(guān)于x的函數(shù);
          (2)x為何值時,圓柱的側(cè)面積最大.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知:一個圓錐的底面半徑為R,高為H,在其中有一個高為x的內(nèi)接圓柱.

             (1)求圓柱的側(cè)面積;

             (2)x為何值時,圓柱的側(cè)面積最大.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

           
          (14分)已知:一個圓錐的底面半徑為R,高為H,在其中有一個高為x的內(nèi)接圓柱.

             (1)求圓柱的側(cè)面積;

             (2)x為何值時,圓柱的側(cè)面積最大.

          查看答案和解析>>

          同步練習(xí)冊答案