【題目】已知關(guān)于x的一元二次不等式ax2+2x+b>0的解集為{x|x≠c},則(其中a+c≠0)的取值范圍為_____.
【答案】(﹣∞,﹣6]∪[6,+∞)
【解析】
由條件利用二次函數(shù)的性質(zhì)可得ac=﹣1,ab=1, 即c=-b將轉(zhuǎn)為(a﹣b)+
,利用基本不等式求得它的范圍.
因為一元二次不等式ax2+2x+b>0的解集為{x|x≠c},由二次函數(shù)圖像的性質(zhì)可得a>0,二次函數(shù)的對稱軸為x==c,△=4﹣4ab=0,
∴ac=﹣1,ab=1,∴c=,b=
,即c=-b,
則=
=(a﹣b)+
,
當(dāng)a﹣b>0時,由基本不等式求得(a﹣b)+≥6,
當(dāng)a﹣b<0時,由基本不等式求得﹣(a﹣b)﹣≥6,即(a﹣b)+
≤﹣6,
故(其中a+c≠0)的取值范圍為:(﹣∞,﹣6]∪[6,+∞),
故答案為:(﹣∞,﹣6]∪[6,+∞).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校舉行漢字聽寫比賽,為了了解本次比賽成績情況,從得分不低于50分的試卷中隨機抽取100名學(xué)生的成績(得分均為整數(shù),滿分100分)進行統(tǒng)計,請根據(jù)頻率分布表中所提供的數(shù)據(jù),解答下列問題:
(1)求的值;
(2)若從成績較好的第3、4、5組中按分層抽樣的方法抽取6人參加市漢字聽寫比賽,并從中選出2人做種子選手,求2人中至少有1人是第4組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動點P與兩個定點O(0,0),A(3,0)的距離的比值為2,點P的軌跡為曲線C.
(1)求曲線C的軌跡方程
(2)過點(﹣1,0)作直線與曲線C交于A,B兩點,設(shè)點M坐標(biāo)為(4,0),求△ABM面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的焦點為F,過F且斜率為的直線l與拋物線C交于A,B兩點,B在x軸的上方,且點B的橫坐標(biāo)為4.
(1)求拋物線C的標(biāo)準方程;
(2)設(shè)點P為拋物線C上異于A,B的點,直線PA與PB分別交拋物線C的準線于E,G兩點,x軸與準線的交點為H,求證:HGHE為定值,并求出定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知(
為自然對數(shù)的底數(shù)).
(1)若在
處的切線過點
,求實數(shù)
的值;
(2)當(dāng)時,
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某沿海城市的海邊有兩條相互垂直的直線型公路l1、l2,海岸邊界MPN近似地看成一條曲線段.為開發(fā)旅游資源,需修建一條連接兩條公路的直線型觀光大道AB,且直線AB與曲線MPN有且僅有一個公共點P(即直線與曲線相切),如圖所示.若曲線段MPN是函數(shù)圖象的一段,點M到l1、l2的距離分別為8千米和1千米,點N到l2的距離為10千米,以l1、l2分別為x、y軸建立如圖所示的平面直角坐標(biāo)系xOy,設(shè)點P的橫坐標(biāo)為p.
(1)求曲線段MPN的函數(shù)關(guān)系式,并指出其定義域;
(2)若某人從點O沿公路至點P觀景,要使得沿折線OAP比沿折線OBP的路程更近,求p的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中
(1)在等差數(shù)列中,
是
的充要條件;
(2)已知等比數(shù)列為遞增數(shù)列,且公比為
,若
,則當(dāng)且僅當(dāng)
;
(3)若數(shù)列為遞增數(shù)列,則
的取值范圍是
;
(4)已知數(shù)列滿足
,則數(shù)列
的通項公式為
(5)若是等比數(shù)列
的前
項的和,且
;(其中
、
是非零常數(shù),
),則A+B為零.
其中正確命題是_________(只需寫出序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正四面體ABCD中,點E,F分別是AB,BC的中點,則下列命題正確的序號是______
①異面直線AB與CD所成角為90°;
②直線AB與平面BCD所成角為60°;
③直線EF∥平面ACD
④平面AFD⊥平面BCD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐中,四邊形
為矩形,
為等腰三角形,
,平面
平面
,且
,
,
分別為
的中點.
(1)證明: 平面
;
(2)證明:平面平面
;
(3)求四棱錐的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com