【題目】已知橢圓
的一個焦點與拋物線
的焦點相同,
為橢圓的左、右焦點.
為橢圓上任意一點,
面積的最大值為1.
(1)求橢圓的方程;
(2)直線交橢圓
于
兩點.若直線
與
的斜率分別為
,且
.求證:直線
過定點,并求出該定點的坐標(biāo).
【答案】(1);(2)
【解析】試題分析:(1)由拋物線的焦點為可以得到橢圓的半焦距
,而
的面積的最大值為
,利用
算出
,從而
,橢圓方程為
.(2)先設(shè)出
和直線
的方程 ,把
轉(zhuǎn)化為
,故聯(lián)立方程組消去
再利用韋達定理把這個關(guān)于
的關(guān)系式化簡為
,所以直線
恒過定點,該定點坐標(biāo)為
.
解析:
(1)由拋物線的方程得其焦點為
,所以橢圓中
,當(dāng)點
為橢圓的短軸端點時,
面積最大,此時
,所以
,所以橢圓的方程為
.
(2)聯(lián)立得
,
,得
,
設(shè),則
,又
,整理得
,即
,化簡得
,所以直線
的方程為
,因此直線
恒過定點,該定點坐標(biāo)為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)離心率為 的橢圓E:
+
=1(a>b>0)的左、右焦點為F1 , F2 , 點P是E上一點,PF1⊥PF2 , △PF1F2內(nèi)切圓的半徑為
﹣1.
(1)求E的方程;
(2)矩形ABCD的兩頂點C、D在直線y=x+2,A、B在橢圓E上,若矩形ABCD的周長為 ,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在坐標(biāo)原點,焦點在
軸上,橢圓
上的點到焦點距離的最大值為3,最小值為1.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線:
與橢圓
相交于
,
兩點(
,
不是左右頂點),且以
為直徑的圓過橢圓
的右頂點.求證:直線
過定點,并求出該定點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】全國大學(xué)生機器人大賽是由共青團中央,全國學(xué)聯(lián),深圳市人民政府聯(lián)合主辦的賽事,是中國最具影響力的機器人項目,是全球獨創(chuàng)的機器人競技平臺.全國大學(xué)生機器人大賽比拼的是參賽選手們的能力,堅持和態(tài)度,展現(xiàn)的是個人實力以及整個團隊的力量.2015賽季共吸引全國240余支機器人戰(zhàn)隊踴躍報名,這些參賽戰(zhàn)隊來自全國六大賽區(qū),150余所高等院校,其中不乏北京大學(xué),清華大學(xué),上海交大,中國科大,西安交大等眾多國內(nèi)頂尖高校,經(jīng)過嚴(yán)格篩選,最終由111支機器人戰(zhàn)隊參與到2015年全國大學(xué)生機器人大賽的激烈角逐之中,某大學(xué)共有“機器人”興趣團隊1000個,大一、大二、大三、大四分別有100,200,300,400個,為挑選優(yōu)秀團隊,現(xiàn)用分層抽樣的方法,從以上團隊中抽取20個團隊.
(1)應(yīng)從大三抽取多少個團隊?
(2)將20個團隊分為甲、乙兩組,每組10個團隊,進行理論和實踐操作考試(共150分),甲、乙兩組的分?jǐn)?shù)如下:
甲:125,141,140,137,122,114,119,139,121,142
乙:127,116,144,127,144,116,140,140,116,140
從甲、乙兩組中選一組強化訓(xùn)練,備戰(zhàn)機器人大賽.從統(tǒng)計學(xué)數(shù)據(jù)看,若選擇甲組,理由是什么?若選擇乙組,理由是什么?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱錐A-BCD中,AB⊥平面BCD,CD⊥BD .
(1)求證:CD⊥平面ABD;
(2)若AB=BD=CD=1,M為AD中點,求三棱錐A-MBC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線x2=ay(a>0)的準(zhǔn)線l與y軸交于點P,若l繞點P以每秒 弧度的角速度按逆時針方向旋轉(zhuǎn)t秒鐘后,恰與拋物線第一次相切,則t等于( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點M到坐標(biāo)原點的距離和它到直線l:x=﹣m(m>0)的距離之比是一個常數(shù) .
(Ⅰ)求點M的軌跡;
(Ⅱ)若m=1時得到的曲線是C,將曲線C向左平移一個單位長度后得到曲線E,過點P(﹣2,0)的直線l1與曲線E交于不同的兩點A(x1 , y1),B(x2 , y2),過F(1,0)的直線AF、BF分別交曲線E于點D、Q,設(shè) =α
,
=β
,α、β∈R,求α+β的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)在區(qū)間
上的圖像如圖所示,將該函數(shù)圖像上各點的橫坐標(biāo)縮短到原來的一半(縱坐標(biāo)不變),再向右平移
個單位長度后,所得到的圖像關(guān)于直線
對稱,則
的最小值為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點
,離心率為
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓的上頂點作直線交拋物線
于
兩點,
為原點.
①求證: ;
②設(shè)、
分別與橢圓相交于
、
兩點,過原點
作直線
的垂線
,垂足為
,證明:
為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com