日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓經(jīng)過點,離心率為,左、右焦點分別為

          (1)求橢圓的方程;

          (2)若直線與橢圓交于A,B兩點,與以為直徑的圓交于C,D兩點,的值.

          【答案】(1)1;(2).

          【解析】試題分析:(1)由題設知求出的值即可;

          (2)由題設,F1F2為直徑的圓的方程為x2y21,根據(jù)圓的弦長的求法求出,聯(lián)立直線與橢圓的方程,根據(jù)弦長公式求出弦長,即可.

          試題解析:(1)由題設知

          解得,

          橢圓的方程為1.

          (2)由題設,F1F2為直徑的圓的方程為x2y21,

          圓心到直線l的距離d,

          |CD|2.

          A(x1,y1),B(x2,y2),

          4x2-4x+80.

          由根與系數(shù)的關系可得x1x21,x1x2-2.

          |AB|,.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓的左,右焦點分別為,上頂點為, 是斜邊長為的等腰直角三角形,若直線與橢圓交于不同兩點.

          (Ⅰ)求橢圓的標準方程;

          (Ⅱ)當時,求線段的長度;

          )是否存在,使得?若存在,求出的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知過拋物線的焦點,斜率為的直線交拋物線于

          兩點.

          (1)求線段的長度;

          (2) 為坐標原點, 為拋物線上一點,若,求的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】設函數(shù)f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R.
          (1)求f(x)的單調(diào)區(qū)間;
          (2)若f(x)存在極值點x0 , 且f(x1)=f(x0),其中x1≠x0 , 求證:x1+2x0=0;
          (3)設a>0,函數(shù)g(x)=|f(x)|,求證:g(x)在區(qū)間[﹣1,1]上的最大值不小于

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)=cos4x+sin2x,下列結(jié)論中錯誤的是(  )

          A. f(x)是偶函數(shù)

          B. 函數(shù)f(x)最小值為

          C. 是函數(shù)f(x)的一個周期

          D. 函數(shù)f(x)內(nèi)是減函數(shù)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】某地隨著經(jīng)濟的發(fā)展,居民收入逐年增長,下表是該地一建設銀行連續(xù)五年的儲蓄存款(年底余額),如下表1

          年份x

          2011

          2012

          2013

          2014

          2015

          儲蓄存款y(千億元)

          5

          6

          7

          8

          10

          為了研究計算的方便,工作人員將上表的數(shù)據(jù)進行了處理, 得到下表2

          時間代號t

          1

          2

          3

          4

          5

          z

          0

          1

          2

          3

          5

          (Ⅰ)求z關于t的線性回歸方程;

          (Ⅱ)用所求回歸方程預測到2020年年底,該地儲蓄存款額可達多少?

          (附:對于線性回歸方程,其中

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖是一段圓錐曲線,曲線與兩個坐標軸的交點分別是

          (1)若該曲線為橢圓(中心為原點,對稱軸為坐標軸)的一部分,設直線過點且斜率是,求直線與該段曲線的公共點的坐標.

          (2)若該曲線為拋物線的一部分,求原拋物線的方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知圓,圓心為,定點,P為圓上一點,線段上一點N滿足,直線上一點Q,滿足.

          (Ⅰ) 求點Q的軌跡C的方程;

          (Ⅱ) O為坐標原點, 是以為直徑的圓,直線相切,并與軌跡C交于不同的兩點A,B. 當且滿足時,求△OAB面積S的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖1,已知知矩形中,點是邊上的點, 相交于點,且,現(xiàn)將沿折起,如圖2,點的位置記為,此時.

          (1)求證: ;

          (2)求三棱錐的體積.

          查看答案和解析>>

          同步練習冊答案