日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知點,,動點G滿足
          (Ⅰ)求動點G的軌跡的方程;
          (Ⅱ)已知過點且與軸不垂直的直線l交(Ⅰ)中的軌跡于P,Q兩點.在線段上是否存在點,使得以MP,MQ為鄰邊的平行四邊形是菱形?若存在,求實數(shù)m的取值范圍;若不存在,請說明理由.
          (Ⅰ)的方程是.(Ⅱ)存在,實數(shù)m的取值范圍是

          試題分析:(Ⅰ)由橢圓的定義知,動點G的軌跡是以,為焦點的橢圓,由題設即可得動點G的軌跡的方程.(Ⅱ)要使得以MP、MQ為鄰邊的平行四邊形是菱形,只需即可.設,則,由移項用平方差公式得   ①
          設直線的方程為,則,故①式變形為,然后用韋達定理可得一個的關(guān)系式:,由此關(guān)系式可看出,這樣的點存在,并由可求出的取值范圍.
          另外,由于,所以也可利用得:.
          試題解析:(Ⅰ)由,且知,動點G的軌跡是以,為焦點的橢圓,設該橢圓的標準方程為,,
          由題知,,則,
          故動點G的軌跡的方程是. 4分
          (Ⅱ)假設在線段上存在,使得以MP、MQ為鄰邊的平行四邊形是菱形.直線l與軸不垂直,設直線的方程為,,
          可得
          , . 6分
          ,,其中
          由于MP,MQ為鄰邊的平行四邊形是菱形,
          所以,則有, 8分
          從而,
          所以,
          ,則,
          故上式變形為, 10分
          代入上式,得,
          ,所以,可知
          故實數(shù)m的取值范圍是.                   ..13分
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源:不詳 題型:解答題

          已知橢圓兩焦點坐標分別為,,且經(jīng)過點
          (Ⅰ)求橢圓的標準方程;
          (Ⅱ)已知點,直線與橢圓交于兩點.若△是以為直角頂點的等腰直角三角形,試求直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          給定橢圓C:,若橢圓C的一個焦點為F(,0),其短軸上的一個端點到F的距離為
          (I)求橢圓C的方程;
          (II)已知斜率為k(k≠0)的直線l與橢圓C交于不同的兩點A,B,點Q滿足=0,其中N為橢圓的下頂點,求直線在y軸上截距的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          已知橢圓的離心率為,右焦點為,右頂點在圓上.
          (Ⅰ)求橢圓和圓的方程;
          (Ⅱ)已知過點的直線與橢圓交于另一點,與圓交于另一點.請判斷是否存在斜率不為0的直線,使點恰好為線段的中點,若存在,求出直線的方程;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          (本小題滿分12分)已知橢圓的離心率為在橢圓C上,A,B為橢圓C的左、右頂點.
          (1)求橢圓C的方程:
          (2)若P是橢圓上異于A,B的動點,連結(jié)AP,PB并延長,分別與右準線相交于M1,M2.問是否存在x軸上定點D,使得以M1M2為直徑的圓恒過點D?若存在,求點D的坐標:若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          (13分)點P為圓上一個動點,M為點P在y軸上的投影,動點Q滿足
          (1)求動點Q的軌跡C的方程;
          (2)一條直線l過點,交曲線C于A、B兩點,且A、B同在以點D(0,1)為圓心的圓上,求直線l的方程。

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          已知橢圓的中心在原點,焦點在x軸上,離心率為,且經(jīng)過點,直線交橢圓于不同的兩點A,B.
          (Ⅰ)求橢圓的方程;
          (Ⅱ)求m的取值范圍;
          (Ⅲ)若直線不過點M,求證:直線MA、MB與x軸圍成一個等腰三角形

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          已知橢圓的離心率為,以原點為圓心,橢圓的短半軸為半徑的圓與直線相切,過點P(4,0)且不垂直于x軸直線與橢圓C相交于A、B兩點.
          (1)求橢圓C的方程;
          (2)求的取值范圍;
          (3)若B點關(guān)于x軸的對稱點是E,證明:直線AE與x軸相交于定點.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:單選題

          已知雙曲線的頂點恰好是橢圓的兩個頂點,且焦距是,則此雙曲線的漸近線方程是(    )
          A.B.C.D.

          查看答案和解析>>

          同步練習冊答案