日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知拋物線C:y2=2px和⊙M:(x﹣4)2+y2=1,過拋物線C上一點H(x0 , y0)(y0≥1)作兩條直線與⊙M相切于A、兩點,分別交拋物線為E、F兩點,圓心點M到拋物線準線的距離為
          (Ⅰ)求拋物線C的方程;
          (Ⅱ)當∠AHB的角平分線垂直x軸時,求直線EF的斜率;
          (Ⅲ)若直線AB在y軸上的截距為t,求t的最小值.

          【答案】解:(Ⅰ)∵點M到拋物線準線的距離為 = ,
          ,∴拋物線C的方程為y2=x.
          (Ⅱ)法一:∵當∠AHB的角平分線垂直x軸時,點H(4,2),∴kHE=﹣kHF ,
          設E(x1 , y1),F(xiàn)(x2 , y2),∴ ,∴ ,
          ∴y1+y2=﹣2yH=﹣4.

          法二:∵當∠AHB的角平分線垂直x軸時,點H(4,2),∴∠AHB=60°,可得 ,
          ∴直線HA的方程為 ,
          聯(lián)立方程組 ,得 ,

          ,
          同理可得 , ,∴ .(
          (Ⅲ)法一:設A(x1 , y1),B(x2 , y2),∵ ,∴ ,
          ∴直線HA的方程為(4﹣x1)x﹣y1y+4x1﹣15=0,
          同理,直線HB的方程為(4﹣x2)x﹣y2y+4x2﹣15=0,
          , ,
          ∴直線AB的方程為 ,
          令x=0,可得 ,
          ,∴t關于y0的函數(shù)在[1,+∞)上單調(diào)遞增,
          ∴當y0=1時,tmin=﹣11.
          法二:設點H(m2 , m)(m≥1),HM2=m4﹣7m2+16,HA2=m4﹣7m2+15.
          以H為圓心,HA為半徑的圓方程為(x﹣m22+(y﹣m)2=m4﹣7m2+15,①
          ⊙M方程:(x﹣4)2+y2=1.②
          ①﹣②得:直線AB的方程為(2x﹣m2﹣4)(4﹣m2)﹣(2y﹣m)m=m4﹣7m2+14.(9分)
          當x=0時,直線AB在y軸上的截距 (m≥1),
          ,∴t關于m的函數(shù)在[1,+∞)上單調(diào)遞增,
          ∴當m=1時,tmin=﹣11
          【解析】(Ⅰ)利用點M到拋物線準線的距離為 ,可得 ,從而可求拋物線C的方程;(Ⅱ)法一:根據(jù)當∠AHB的角平分線垂直x軸時,點H(4,2),可得kHE=﹣kHF , 設E(x1 , y1),F(xiàn)(x2 , y2),可得y1+y2=﹣2yH=﹣4,從而可求直線EF的斜率;
          法二:求得直線HA的方程為 ,與拋物線方程聯(lián)立,求出E,F(xiàn)的坐標,從而可求直線EF的斜率;(Ⅲ)法一:設A(x1 , y1),B(x2 , y2),求出直線HA的方程,直線HB的方程,從而可得直線AB的方程,令x=0,可得 ,再利用導數(shù)法,即可求得t的最小值.
          法二:求以H為圓心,HA為半徑的圓方程,⊙M方程,兩方程相減,可得直線AB的方程,當x=0時,直線AB在y軸上的截距 (m≥1),再利用導數(shù)法,即可求得t的最小值.
          【考點精析】解答此題的關鍵在于理解利用導數(shù)研究函數(shù)的單調(diào)性的相關知識,掌握一般的,函數(shù)的單調(diào)性與其導數(shù)的正負有如下關系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減,以及對函數(shù)的最大(小)值與導數(shù)的理解,了解求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】若Sn=cos +cos +…+cos (n∈N+),則在S1 , S2 , …,S2015中,正數(shù)的個數(shù)是(
          A.882
          B.756
          C.750
          D.378

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】,函數(shù).

          (Ⅰ)若,求曲線處的切線方程;

          (Ⅱ)若無零點,求實數(shù)的取值范圍;

          (Ⅲ)若有兩個相異零點,求證: .

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知c>0,設命題p:函數(shù)y=cx為減函數(shù).命題q:當x∈[ ,2]時,函數(shù)f(x)=x+ 恒成立.如果“p或q”為真命題,“p且q”為假命題,則c的取值范圍是

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在四棱錐P﹣ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD=
          (Ⅰ)求證:PD⊥平面PAB;
          (Ⅱ)求直線PB與平面PCD所成角的正弦值;
          (Ⅲ)在棱PA上是否存在點M,使得BM∥平面PCD?若存在,求 的值,若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】選修4-4:坐標系與參數(shù)方程

          已知曲線的參數(shù)方程為, 為參數(shù)),以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

          (1)求曲線的普通方程與曲線的直角坐標方程,并討論兩曲線公共點的個數(shù);

          (2)若,求由兩曲線交點圍成的四邊形面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】某租賃公司擁有汽車100輛.當每輛車的月租金為3000元時,可全部租出.當每輛車的月租金每增加50元時,未租出的車將會增加一輛.租出的車每輛每月需要維護費150元,未租出的車每輛每月需要維護費50元.
          (Ⅰ)當每輛車的月租金定為3600元時,能租出多少輛車?
          (Ⅱ)當每輛車的月租金定為多少元時,租賃公司的月收益最大?最大月收益是多少?

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】下列函數(shù)中,滿足“f(x+y)=f(x)f(y)”的單調(diào)遞增函數(shù)是(
          A.f(x)=x
          B.f(x)=x3
          C.f(x)=( x
          D.f(x)=3x

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】【2017河北唐山二!磕硟x器經(jīng)過檢驗合格才能出廠,初檢合格率為:若初檢不合格,則需要進行調(diào)試,經(jīng)調(diào)試后再次對其進行檢驗;若仍不合格,作為廢品處理,再檢合格率為.每臺儀器各項費用如表:

          項目

          生產(chǎn)成本

          檢驗費/

          調(diào)試費

          出廠價

          金額

          1000

          100

          200

          3000

          求每臺儀器能出廠的概率;

          求生產(chǎn)一臺儀器所獲得的利潤為1600元的概率注:利潤出廠價生產(chǎn)成本檢驗費調(diào)試費;

          假設每臺儀器是否合格相互獨立,記為生產(chǎn)兩臺儀器所獲得的利潤,求的分布列和數(shù)學期望.

          查看答案和解析>>

          同步練習冊答案