日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知c>0,設(shè)命題p:函數(shù)y=cx為減函數(shù).命題q:當(dāng)x∈[ ,2]時(shí),函數(shù)f(x)=x+ 恒成立.如果“p或q”為真命題,“p且q”為假命題,則c的取值范圍是

          【答案】
          【解析】解:若命題p:函數(shù)y=cx為減函數(shù)為真,
          則c∈(0,1),
          x∈[ ,2]時(shí),函數(shù)f(x)=x+ ∈[2, ]
          若命題q:當(dāng)x∈[ ,2]時(shí),函數(shù)f(x)=x+ 恒成立為真,
          則2> ,則c∈( ,+∞),
          ∵“p或q”為真命題,“p且q”為假命題,
          故p,q一真一假,
          若p真q假,則c∈(0, ],
          若p假q真,則c∈[1,+∞),
          故c的取值范圍是: ,
          所以答案是:
          【考點(diǎn)精析】掌握命題的真假判斷與應(yīng)用是解答本題的根本,需要知道兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒(méi)有關(guān)系.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知二次函數(shù)f(x)=ax2+2x+c的對(duì)稱(chēng)軸為x=1,g(x)=x+ (x>0).
          (1)求函數(shù)g(x)的最小值及取得最小值時(shí)x的值;
          (2)試確定c的取值范圍,使g(x)﹣f(x)=0至少有一個(gè)實(shí)根;
          (3)若F(x)=﹣f(x)+4x+c,存在實(shí)數(shù)t,對(duì)任意x∈[1,m],使F(x+t)≤3x恒成立,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為,圓的極坐標(biāo)方程為,已知交于、兩點(diǎn),點(diǎn)位于第一象限.

          (Ⅰ)求點(diǎn)和點(diǎn)的極坐標(biāo);

          (Ⅱ)設(shè)圓的圓心為,點(diǎn)是直線上的動(dòng)點(diǎn),且滿足,若直線的參數(shù)方程為為參數(shù)),則的值為多少?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】以下結(jié)論正確的是(
          A.若a<b且c<d,則ac<bd
          B.若ac2>bc2 , 則a>b
          C.若a>b,c<d,則a﹣c<b﹣d
          D.若0<a<b,集合A={x|x= },B={x|x= },則A?B

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓 ,過(guò)橢圓右焦點(diǎn)F的直線L交橢圓于A、B兩點(diǎn),交y軸于P點(diǎn).設(shè) ,則λ12等于(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某天數(shù)學(xué)課上,你突然驚醒,發(fā)現(xiàn)黑板上有如下內(nèi)容:
          例:求x3﹣3x,x∈[0,+∞)的最小值.解:利用基本不等式a+b+c≥3 ,得到x3+1+1≥3x,于是x3﹣3x=x3+1+1﹣3x﹣2≥3x﹣3x﹣2=﹣2,當(dāng)且僅當(dāng)x=1時(shí),取到最小值﹣2
          (1)老師請(qǐng)你模仿例題,研究x4﹣4x,x∈[0,+∞)上的最小值;
          (提示:a+b+c+d≥4
          (2)研究 x3﹣3x,x∈[0,+∞)上的最小值;
          (3)求出當(dāng)a>0時(shí),x3﹣ax,x∈[0,+∞)的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知拋物線C:y2=2px和⊙M:(x﹣4)2+y2=1,過(guò)拋物線C上一點(diǎn)H(x0 , y0)(y0≥1)作兩條直線與⊙M相切于A、兩點(diǎn),分別交拋物線為E、F兩點(diǎn),圓心點(diǎn)M到拋物線準(zhǔn)線的距離為
          (Ⅰ)求拋物線C的方程;
          (Ⅱ)當(dāng)∠AHB的角平分線垂直x軸時(shí),求直線EF的斜率;
          (Ⅲ)若直線AB在y軸上的截距為t,求t的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知左焦點(diǎn)為F(﹣1,0)的橢圓過(guò)點(diǎn)E(1, ).過(guò)點(diǎn)P(1,1)分別作斜率為k1 , k2的橢圓的動(dòng)弦AB,CD,設(shè)M,N分別為線段AB,CD的中點(diǎn).
          (1)求橢圓的標(biāo)準(zhǔn)方程;
          (2)若P為線段AB的中點(diǎn),求k1;
          (3)若k1+k2=1,求證直線MN恒過(guò)定點(diǎn),并求出定點(diǎn)坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】下列命題中:①、若m>0,則方程x2﹣x+m=0有實(shí)根. ②、若x>1,y>1,則x+y>2的逆命題. ③、對(duì)任意的x∈{x|﹣2<x<4},|x﹣2|<3的否定形式. ④、△>0是一元二次方程ax2+bx+c=0有一正根和一負(fù)根的充要條件.是真命題的有

          查看答案和解析>>

          同步練習(xí)冊(cè)答案