【題目】如圖,某市有一條東西走向的公路,現(xiàn)欲經(jīng)過公路
上的
處鋪設(shè)一條南北走向的公路
.在施工過程中發(fā)現(xiàn)在
處的正北1百米的
處有一漢代古跡.為了保護(hù)古跡,該市決定以
為圓心, 1百米為半徑設(shè)立一個(gè)圓形保護(hù)區(qū).為了連通公路
,欲再新建一條公路
,點(diǎn)
分別在公路
上,且求
與圓
相切.
(1)當(dāng)距
處2百米時(shí),求
的長;
(2)當(dāng)公路長最短時(shí),求
的長.
【答案】(1)當(dāng)距
處2百米時(shí),
的長為
百米;(2)當(dāng)公路
長最短時(shí),
的長為
百米.
【解析】試題分析:題目中涉及到直線與圓相切的條件,一般在平面直角坐標(biāo)系中研究,所以先建立合適的坐標(biāo)系;(1)已知點(diǎn),則設(shè)直線
的方程,可設(shè)截距(或點(diǎn)斜式),利用圓心到直線的距離等于半徑,求得
的坐標(biāo),從而得到
的長;(2)研究
長的最小值,則需要建立目標(biāo)函數(shù),選擇合適的變量,本小題依然可以設(shè)直線的兩個(gè)截距,則容易表示出的
長和直線方程,由相切再得到兩截距間的關(guān)系,消元后則得到一個(gè)一元的函數(shù),再利用導(dǎo)數(shù)研究它的最小值;
試題解析:
以為原點(diǎn),直線
、
分別為
軸建立平面直角坐標(biāo)系.
設(shè)與圓
相切于點(diǎn)
,連結(jié)
,以
百米為單位長度,則圓
的方程為
,
(1)由題意可設(shè)直線的方程為
,即
,
,
∵與圓
相切,∴
,解得
,
故當(dāng)距
處
百米時(shí),
的長為
百米.
(2)設(shè)直線的方程為
,即
,
,
∵與圓
相切,∴
,化簡得
,則
,
令,∴
,
當(dāng)時(shí),
,即
在
上單調(diào)遞減;
當(dāng)時(shí),
,即
在
上單調(diào)遞增,
∴在
時(shí)取得最小值,故當(dāng)公路
長最短時(shí),
的長為
百米.
答:(1)當(dāng)距
處
百米時(shí),
的長為
百米;(2)當(dāng)公路
長最短時(shí),
的
長為百米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體ABCD-A1B1C1D1中,M、N、E、F分別是棱A1B1、A1D1、B1C1、C1D1的中點(diǎn).
(1)求MN與AC所成角,并說明理由.
(2)求證:平面AMN∥平面EFDB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2﹣2alnx﹣2ax=0有唯一解,則實(shí)數(shù)a的值為( )
A.1
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】廣場舞是現(xiàn)代城市群眾文化、娛樂發(fā)展的產(chǎn)物,其兼具文化性和社會(huì)性,是精神文明建設(shè)成果的一個(gè)重要指標(biāo)和象征.2015年某高校社會(huì)實(shí)踐小組對(duì)某小區(qū)跳廣場舞的人的年齡進(jìn)行了凋查,隨機(jī)抽取了40名廣場舞者進(jìn)行調(diào)查,將他們年齡分成6段:[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如圖所示的頻率分布直方圖.
(1)估計(jì)在40名廣場舞者中年齡分布在[40,70)的人數(shù);
(2)求40名廣場舞者年齡的中位數(shù)和平均數(shù)的估計(jì)值;
(3)若從年齡在[20,40)中的廣場舞者中任取2名,求這兩名廣場舞者年齡在[30,40)中的人數(shù)X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)滿足:在區(qū)間
內(nèi)有且僅有一個(gè)實(shí)數(shù)
,使得
成立,則稱函數(shù)
具有性質(zhì)M.
判斷函數(shù)
是否具有性質(zhì)M,說明理由;
若函數(shù)
具有性質(zhì)M,求實(shí)數(shù)a的取值范圍;
若函數(shù)
具有性質(zhì)M,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家庭進(jìn)行理財(cái)投資,有兩種方式,甲為投資債券等穩(wěn)健型產(chǎn)品,乙為投資股票等風(fēng)險(xiǎn)型產(chǎn)品,設(shè)投資甲、乙兩種產(chǎn)品的年收益分別為、
萬元,根據(jù)長期收益率市場預(yù)測,它們與投入資金
萬元的關(guān)系分別為
,
,(其中
,
,
都為常數(shù)),函數(shù)
,
對(duì)應(yīng)的曲線
,
如圖所示.
(1)求函數(shù)、
的解析式;
(2)若該家庭現(xiàn)有萬元資金,全部用于理財(cái)投資,問:如何分配資金能使一年的投資獲得最大收益,其最大收益是多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某程序框圖如圖所示,若輸出i的值為63,則判斷框內(nèi)可填入的條件是( )
A.S>27
B.S≤27
C.S≥26
D.S<26
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)且
是定義域?yàn)?/span>R的奇函數(shù).
求k值;
若
,試判斷函數(shù)單調(diào)性并求使不等式
恒成立的t的取值范圍;
若
,且
在
上的最小值為
,求m的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com