日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,△ABC是⊙O的內(nèi)接三角形,PA是⊙O的切線,PB交AC于點(diǎn)E,交⊙O于點(diǎn)D,若PE=PA,∠ABC=60°,PD=1,BD=8,求BC的長.
          分析:由PD=1,BD=8我們不難求出割線PB被圓截得的兩條線段的長,根據(jù)切割線定理,我們進(jìn)而可以求出切線PA的長度,由PE=PA及弦切角定理,我們可以得到△AEP為等邊三角形,結(jié)合余弦定理,可以求出AD的長,根據(jù)相似三角性質(zhì),即可求出BC的長.
          解答:解:∵PB=PD+BD=1+8=9,
          由切割線定理得:
          PA2=PD•BD=9,
          ∴PA=3,
          由弦切角定理得:∠PAC=∠ABC=60°,又由PA=PE
          ∴△PAE為等邊三角形,則AE=PA=3,
          連接AD,在△ADE中,ED=PE-PD=2
          由余弦定理易得:AD=
          7

          又△AED~△BEC,相似比=ED:BE=1:2
          BC=2
          7
          點(diǎn)評:本題是考查同學(xué)們推理能力、邏輯思維能力的好資料,題目以證明題為主,特別是一些定理的證明和用多個定理證明一個問題的題目,我們注意熟練掌握:1.射影定理的內(nèi)容及其證明; 2.圓周角與弦切角定理的內(nèi)容及其證明;3.圓冪定理的內(nèi)容及其證明;4.圓內(nèi)接四邊形的性質(zhì)與判定;
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          21、如圖,△ABC是⊙O的內(nèi)接三角形,PA是⊙O的切線,PB交于AC于點(diǎn)E,交⊙O于點(diǎn)D,若PE=PA,∠ABC=60°,PD=1,BD=8,求線段CE的長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (選修4-1:幾何證明選講)
          如圖,△ABC是⊙O的內(nèi)接三角形,PA是⊙O的切線,PB交AC于點(diǎn)E,交⊙O于點(diǎn)D,若PE=PA,∠ABC=60°,PD=1,BD=8,求線段BC的長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評閱記分)
          A.如圖,△ABC是⊙O的內(nèi)接三角形,PA是⊙O的切線,PB交AC于點(diǎn)E,交⊙O于點(diǎn)D.若PA=PE,∠ABC=60°,PD=1,PB=9,則EC=
          4
          4

          B. P為曲線C1
          x=1+cosθ
          y=sinθ
          ,(θ為參數(shù))上一點(diǎn),則它到直線C2
          x=1+2t
          y=2
          (t為參數(shù))距離的最小值為
          1
          1

          C.不等式|x2-3x-4|>x+1的解集為
          {x|x>5或x<-1或-1<x<3}
          {x|x>5或x<-1或-1<x<3}

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          [選做題]
          A.(選修4-1:幾何證明選講)
          如圖,△ABC是⊙O的內(nèi)接三角形,PA是⊙O的切線,PB交AC于點(diǎn)E,交⊙O于點(diǎn)D,若PE=PA,
          ∠ABC=60°,PD=1,BD=8,求BC的長.
          B.(選修4-2:矩陣與變換)
          二階矩陣M對應(yīng)的變換將點(diǎn)(1,-1)與(-2,1)分別變換成點(diǎn)(-1,-1)與(0,-2).
          (Ⅰ)求矩陣M的逆矩陣M-1;
          (Ⅱ)設(shè)直線l在變換M作用下得到了直線m:2x-y=4,求l的方程.
          C.(選修4-4:坐標(biāo)系與參數(shù)方程)
          在極坐標(biāo)系中,設(shè)圓ρ=3上的點(diǎn)到直線ρ(cosθ+
          3
          sinθ)=2
          的距離為d,求d的最大值.
          D.(選修4-5:不等式選講)
          設(shè)a,b,c為正數(shù)且a+b+c=1,求證:(a+
          1
          a
          )2+(b+
          1
          b
          )2+(c+
          1
          c
          )2
          100
          3

          查看答案和解析>>

          同步練習(xí)冊答案