【題目】某高校在2017年的自主招生考試成績中隨機(jī)抽取100名學(xué)生的筆試成績,按成績分組,得到的頻率分布表如表:
組號 | 分組 | 頻率 |
第1組 | ||
第2組 | ||
第3組 | ||
第4組 | ||
第5組 |
求出頻率分布表中
處應(yīng)填寫的數(shù)據(jù),并完成如圖所示的頻率分布直方圖;
根據(jù)直方圖估計(jì)這次自主招生考試筆試成績的平均數(shù)和中位數(shù)
結(jié)果都保留兩位小數(shù)
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓
的參數(shù)方程為
(
為參數(shù)).以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
.
(1)求橢圓的極坐標(biāo)方程和直線
的直角坐標(biāo)方程;
(2)若點(diǎn)的極坐標(biāo)為
,直線
與橢圓
相交于
,
兩點(diǎn),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
的離心率為
,橢圓
:
經(jīng)過點(diǎn)
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)是橢圓
上的任意一點(diǎn),射線
與橢圓
交于點(diǎn)
,過點(diǎn)
的直線
與橢圓
有且只有一個(gè)公共點(diǎn),直線
與橢圓
交于
,
兩個(gè)相異點(diǎn),證明:
面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為中心,以坐標(biāo)軸為對稱軸的幫圓C經(jīng)過點(diǎn)M(2,1),N.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)經(jīng)過點(diǎn)M作傾斜角互補(bǔ)的兩條直線,分別與橢圓C相交于異于M點(diǎn)的A,B兩點(diǎn),當(dāng)△AMB面積取得最大值時(shí),求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在中,
,
兩點(diǎn)分別在
上,且使
,
. 現(xiàn)將
沿
折起,使平面
平面
,得到四棱錐
(如圖2)
(1)證明:平面
;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,設(shè)橢圓
的左焦點(diǎn)為
,左準(zhǔn)線為
為橢圓
上任意一點(diǎn),直線
,垂足為
,直線
與
交于點(diǎn)
.
(1)若,且
,直線
的方程為
.①求橢圓
的方程;②是否存在點(diǎn)
,使得
?若存在,求出點(diǎn)
的坐標(biāo);若不存在,說明理由.
(2)設(shè)直線與圓
交于
兩點(diǎn),求證:直線
均與圓
相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,側(cè)面
底面ABC,
,且
,O為AC中點(diǎn).
(1)求直線與平面
所成角的正弦值;
(2)在上是否存在一點(diǎn)E,使得
平面
,若不存在,說明理由;若存在,確定點(diǎn)E的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某社區(qū)有居民人,為了迎接第十一個(gè)“全民健身日”的到來,居委會從中隨機(jī)抽取了
名居民,統(tǒng)計(jì)了他們本月參加戶外運(yùn)動時(shí)間(單位:小時(shí))的數(shù)據(jù),并將數(shù)據(jù)進(jìn)行整理,分為
組:
,
,
,
,
,得到如圖所示的頻率分布直方圖.
(Ⅰ)試估計(jì)該社區(qū)所有居民中,本月戶外運(yùn)動時(shí)間不小于小時(shí)的人數(shù);
(Ⅱ)已知這名居民中恰有
名女性的戶外運(yùn)動時(shí)間在
,現(xiàn)從戶外運(yùn)動時(shí)間在
的樣本對應(yīng)的居民中隨機(jī)抽取
人,求至少抽到
名女性的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)在拋物線
:
上.
(1)求的方程;
(2)過上的任一點(diǎn)
(
與
的頂點(diǎn)不重合)作
軸于
,試求線段
中點(diǎn)的軌跡方程;
(3)在上任取不同于點(diǎn)
的點(diǎn)
,直線
與直線
交于點(diǎn)
,過點(diǎn)
作
軸的垂線交拋物線
于點(diǎn)
,求
面積的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com