日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,平面平面,四邊形是全等的等腰梯形,其中,且,點(diǎn)的中點(diǎn),點(diǎn)的中點(diǎn).

          (Ⅰ)求證: 平面;

          (Ⅱ)請?jiān)趫D中所給的點(diǎn)中找出兩個(gè)點(diǎn),使得這兩點(diǎn)所在的直線與平面垂直,并給出證明;

          (Ⅲ)在線段上是否存在點(diǎn),使得平面?如果存在,求出的長度;如果不存在,請說明理由.

          【答案】(Ⅰ)見解析(Ⅱ)見解析 (Ⅲ)見解析

          【解析】試題分析:(由四邊形是等腰梯形點(diǎn)的中點(diǎn),點(diǎn)的中點(diǎn),得,從而可證平面;依題意可證 ,再根據(jù)可證為菱形,即可證;)假設(shè)存在點(diǎn),使得平面可證為平行四邊形,從而推出平面,即可證平面,則為平行四邊形,從而推出矛盾,即可得出結(jié)論.

          試題解析:(∵四邊形是等腰梯形,點(diǎn)的中點(diǎn),點(diǎn)的中點(diǎn)

          又∵平面平面,平面平面

          平面

          點(diǎn)為所求的點(diǎn)

          平面

          又∵,

          為菱形

          ,

          平面

          (Ⅲ)假設(shè)存在點(diǎn),使得平面

          ,所以為平行四邊形,

          平面

          平面

          又∵

          ∴平面平面

          平面

          為平行四邊形

          ,矛盾,

          ∴不存在點(diǎn),使得平面

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】棉花的纖維長度是評價(jià)棉花質(zhì)量的重要指標(biāo),某農(nóng)科所的專家在土壤環(huán)境不同的甲、乙兩塊實(shí)驗(yàn)地分別種植某品種的棉花,為了評價(jià)該品種的棉花質(zhì)量,在棉花成熟后,分別從甲、乙兩地的棉花中各隨機(jī)抽取20根棉花纖維進(jìn)行統(tǒng)計(jì),結(jié)果如下表:(記纖維長度不低于300mm的為“長纖維”,其余為“短纖維”)

          纖維長度

          (0,100)

          [100,200)

          [200,300)

          [300,400)

          [400,500]

          甲地(根數(shù))

          3

          4

          4

          5

          4

          乙地(根數(shù))

          1

          1

          2

          10

          6


          (1)由以上統(tǒng)計(jì)數(shù)據(jù),填寫下面2×2列聯(lián)表,并判斷能否在犯錯(cuò)誤概率不超過0.025的前提下認(rèn)為“纖維長度與土壤環(huán)境有關(guān)系”.

          甲地

          乙地

          總計(jì)

          長纖維

          短纖維

          總計(jì)

          附:(1) ;(2)臨界值表;

          P(K2≥k0

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          k0

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828


          (2)現(xiàn)從上述40根纖維中,按纖維長度是否為“長纖維”還是“短纖維”采用分層抽樣的方法抽取8根進(jìn)行檢測,在這8根纖維中,記乙地“短纖維”的根數(shù)為X,求X的分布列及數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐P﹣ABCD的底面ABCD是平行四邊形,側(cè)面PAD是邊長為2的正三角形,AB=BD= ,PB=
          (Ⅰ)求證:平面PAD⊥平面ABCD;
          (Ⅱ)設(shè)Q是棱PC上的點(diǎn),當(dāng)PA∥平面BDQ時(shí),求二面角A﹣BD﹣Q的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】春節(jié)期間,受煙花爆竹集中燃放影響,我國多數(shù)城市空氣中PM2.5濃度快速上升,特別是在大氣擴(kuò)散條件不利的情況下,空氣質(zhì)量在短時(shí)間內(nèi)會(huì)迅速惡化.2017年除夕18時(shí)和初一2時(shí),國家環(huán)保部門對8個(gè)城市空氣中PM2.5濃度監(jiān)測的數(shù)據(jù)如表(單位:微克/立方米).

          除夕18時(shí)PM2.5濃度

          初一2時(shí)PM2.5濃度

          北京

          75

          647

          天津

          66

          400

          石家莊

          89

          375

          廊坊

          102

          399

          太原

          46

          115

          上海

          16

          17

          南京

          35

          44

          杭州

          131

          39

          (Ⅰ)求這8個(gè)城市除夕18時(shí)空氣中PM2.5濃度的平均值;
          (Ⅱ)環(huán)保部門發(fā)現(xiàn):除夕18時(shí)到初一2時(shí)空氣中PM2.5濃度上升不超過100的城市都是“禁止燃放煙花爆竹“的城市,濃度上升超過100的城市都未禁止燃放煙花爆竹.從以上8個(gè)城市中隨機(jī)選取3個(gè)城市組織專家進(jìn)行調(diào)研,記選到“禁止燃放煙花爆竹”的城市個(gè)數(shù)為X,求隨機(jī)變量y的分布列和數(shù)學(xué)期望;
          (Ⅲ)記2017年除夕18時(shí)和初一2時(shí)以上8個(gè)城市空氣中PM2.5濃度的方差分別為s12和s22 , 比較s12和s22的大小關(guān)系(只需寫出結(jié)果).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=pe﹣x+x+1(p∈R). (Ⅰ)當(dāng)實(shí)數(shù)p=e時(shí),求曲線y=f(x)在點(diǎn)x=1處的切線方程;
          (Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
          (Ⅲ)當(dāng)p=1時(shí),若直線y=mx+1與曲線y=f(x)沒有公共點(diǎn),求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知MOD函數(shù)是一個(gè)求余函數(shù),記MOD(m,n)表示m除以n的余數(shù),例如MOD(8,3)=2.如圖是某個(gè)算法的程序框圖,若輸入m的值為48時(shí),則輸出i的值為(
          A.7
          B.8
          C.9
          D.10

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,在直角梯形中,,,且.現(xiàn)以為一邊向形外作正方形,然后沿邊將正方形翻折,使平面與平面垂直,的中點(diǎn),如圖2.

          (1)求證:平面

          (2)求證:平面;

          (3)求三棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】數(shù)學(xué)名著《算學(xué)啟蒙》中有如下問題:“松長五尺,竹長兩尺,松日自半,竹日自倍,松竹何日而長等.”如圖是源于其思想的一個(gè)程序框圖,若輸入的a,b的值分別為16,4,則輸出的n的值為(
          A.4
          B.5
          C.6
          D.7

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)f(x)=(x-1)3-ax-b,x∈R,其中a,b∈R。
          (1)求f(x)的單調(diào)區(qū)間;
          (2)若f(x)存在極點(diǎn)x0 , 且f(x1)=f(x0),其中x1x0 , 求證:x1+2x0=3;
          (3)設(shè)a>0,函數(shù)g(x)=∣f(x)∣,求證:g(x)在區(qū)間[0,2]上的最大值不小于

          查看答案和解析>>

          同步練習(xí)冊答案