【題目】已知為常數,函數
(1)過坐標原點作曲線的切線,設切點為
,求
;
(2)令,若函數
在區(qū)間
上是單調減函數,求
的取值范圍.
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的左右焦點為
,
,
是橢圓上半部分的動點,連接
和長軸的左右兩個端點所得兩直線交
正半軸于
,
兩點(點
在
的上方或重合).
(1)當面積
最大時,求橢圓的方程;
(2)當時,若
是線段
的中點,求直線
的方程;
(3)當時,在
軸上是否存在點
使得
為定值,若存在,求
點的坐標,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某種商品原來毎件售價為25元,年銷售8萬件.
(1)據市場調查,若價格毎提高1元,銷售量將相應瑊少2000件,要使銷售的總收入不低于原收入,該商品每件定價最多為多少?
(2)為了擴大商品的影響力,提高年銷售量,公司決定明年對該商品進行全面技術革新和營銷策略改革,并提高價格到元,公司擬投入
萬元作為技改費用,投入50萬元作為固定宣傳費用,試問:該商品明年的銷售量
至少達到多少萬件時,才可能使明年的銷售收入不低于原收入與總投入之和?并求出此時每件商品的定價.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的兩個焦點分別為
,
,離心率為
,過
的直線
與橢圓
交于
,
兩點,且
的周長為8.
(1)求橢圓的方程;
(2)若直線與橢圓
分別交于
,
兩點,且
,試問點
到直線
的距離是否為定值,證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市環(huán)保部門對市中心每天的環(huán)境污染情況進行調查研究后,發(fā)現(xiàn)一天中環(huán)境綜合污染指數與時刻
(時)的關系為
,
,其中
是與氣象有關的參數,且
.若用每天
的最大值為當天的綜合污染指數,并記作
.
(1)令,
,求
的取值范圍;
(2)求的表達式,并規(guī)定當
時為綜合污染指數不超標,求當
在什么范圍內時,該市市中心的綜合污染指數不超標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在5件產品中,有3件一等品和2件二等品,從中任取2件,以為概率的事件是( )
A. 恰有1件一等品 B. 至少有一件一等品
C. 至多有一件一等品 D. 都不是一等品
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著改革開放的不斷深入,祖國不斷富強,人民的生活水平逐步提高,為了進一步改善民生,2019年1月1日起我國實施了個人所得稅的新政策,其政策的主要內容包括:(1)個稅起征點為5000元;(2)每月應納稅所得額(含稅)收入
個稅起征點
專項附加扣除;(3)專項附加扣除包括①贍養(yǎng)老人費用②子女教育費用③繼續(xù)教育費用④大病醫(yī)療費用
等.其中前兩項的扣除標準為:①贍養(yǎng)老人費用:每月扣除2000元②子女教育費用:每個子女每月扣除1000元.新個稅政策的稅率表部分內容如下:
級數 | 一級 | 二級 | 三級 | 四級 | |
每月應納稅所得額(含稅) | 不超過3000元的部分 | 超過3000元至12000元的部分 | 超過12000元至25000元的部分 | 超過25000元至35000元的部分 | |
稅率 | 3 | 10 | 20 | 25 |
(1)現(xiàn)有李某月收入29600元,膝下有一名子女,需要贍養(yǎng)老人,除此之外,無其它專項附加扣除.請問李某月應繳納的個稅金額為多少?
(2)為研究月薪為20000元的群體的納稅情況,現(xiàn)收集了某城市500名的公司白領的相關資料,通過整理資料可知,有一個孩子的有400人,沒有孩子的有100人,有一個孩子的人中有300人需要贍養(yǎng)老人,沒有孩子的人中有50人需要贍養(yǎng)老人,并且他們均不符合其它專項附加扣除(受統(tǒng)計的500人中,任何兩人均不在一個家庭).若他們的月收入均為20000元,依據樣本估計總體的思想,試估計在新個稅政策下這類人群繳納個稅金額的分布列與期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知
兩點分別為橢圓
的右頂點和上頂點,且
,右準線
的方程為
.
(1)求橢圓的標準方程;
(2)過點的直線交橢圓于另一點
,交
于點
.若以
為直徑的圓經過原點,求直線
的方程.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com