日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知關(guān)于x的不等式ax2+2x+b>0(a≠0)的解集為 ,且a>b,則 的最小值是

          【答案】2
          【解析】解:關(guān)于x的不等式ax2+2x+b>0(a≠0)的解集為 ,∴ ,
          即ab=1且a>0;
          又a>b,∴a﹣b>0;
          = =(a﹣b)+ ≥2 =2 ,
          當且僅當a﹣b= ,即a﹣b= 時“=”成立;
          的最小值是2
          所以答案是:2
          【考點精析】認真審題,首先需要了解解一元二次不等式(求一元二次不等式解集的步驟:一化:化二次項前的系數(shù)為正數(shù);二判:判斷對應方程的根;三求:求對應方程的根;四畫:畫出對應函數(shù)的圖象;五解集:根據(jù)圖象寫出不等式的解集;規(guī)律:當二次項系數(shù)為正時,小于取中間,大于取兩邊).

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】在正方體ABCD﹣A1B1C1D1中,E,F(xiàn)分別為AB,BC中點,則異面直線EF與AB1所成角的余弦值為(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】選修4-4:坐標系與參數(shù)方程

          已知圓和直線.

          (Ⅰ)求的參數(shù)方程以及圓上距離直線最遠的點坐標;

          (Ⅱ)以坐標原點為極點, 軸正半軸為極軸建立極坐標系,將圓上除點以外所有點繞著逆時針旋轉(zhuǎn)得到曲線,求曲線的極坐標方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】選修4-4:坐標系與參數(shù)方程

          在直角坐標系中,直線的參數(shù)方程為為參數(shù)).以原點為極點, 軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.直線交曲線兩點.

          (1)寫出直線的極坐標方程和曲線的直角坐標方程;

          (2)設點的直角坐標為,求點兩點的距離之積.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】△ABC中,角A,B,C所對的邊分別為a,b,c,已知sinA+sinC=psinB且 .若角B為銳角,則p的取值范圍是( )
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如下圖,在四棱柱中,點分別為的中點.

          (1)求證: 平面;

          (2)若四棱柱是長方體,且,求平面與平面所成二面角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】二次函數(shù)f(x)滿足f(x+1)﹣f(x)=2x,且f(0)=1.
          (1)求f(x)的解析式;
          (2)在區(qū)間[﹣1,1]上,y=f(x)的圖象恒在y=2x+m的圖象上方,試確定實數(shù)m的范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)= sin2x+cos2x﹣m在[0, ]上有兩個零點,則實數(shù)m的取值范圍是(
          A.(﹣1,2)
          B.[1,2)
          C.(﹣1,2]
          D.[1,2]

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓C: =1(a>b>0)的左、右焦點分別為F1 , F2 , 且F1 , F2與短軸的一個頂點Q構(gòu)成一個等腰直角三角形,點P( , )在橢圓C上.
          (I)求橢圓C的標準方程;
          (Ⅱ)過F2作互相垂直的兩直線AB,CD分別交橢圓于點A,B,C,D,且M,N分別是弦AB,CD的中點,求△MNF2面積的最大值.

          查看答案和解析>>

          同步練習冊答案