日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,底面是平行四邊形的四棱錐中,點是線段上的點,平面,平面,.

          1)求證:點中點;

          2)求證:平面平面;

          3)求三棱錐底面上的高.

          【答案】1)證明見解析;(2)證明見解析;(3

          【解析】

          1)連接,連接,即可證明,中點,即可證明點中點;

          2)根據(jù)題意,可證明,即可證明平面.由平面與平面垂直的判定定理即可證明平面平面;

          3)根據(jù)題意,可知平面,從而求得、,從可得.利用等體積法即可求得棱錐底面上的高.

          1)證明:連接,連接,如下圖所示:

          因為四邊形是平行四邊形,中點,

          平面,平面,平面平面,

          ,

          中點,

          中點.

          2)因為平面,平面,

          所以,

          ,,平面,

          平面,

          所以平面平面.

          3)由題意可知平面,

          所以平面,

          ,

          ,,

          ,,

          設(shè)三棱錐底面上的高為,

          ,

          另一方面,

          所以解得.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知集合,,全集

          1)當(dāng)時,求,;

          2)若成立的充分不必要條件,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】美國想通過對中國芯片的技術(shù)封鏡達到扼殺中國科技的企圖,但卻激發(fā)了中國“芯”的研究熱潮.某公司研發(fā)的兩種芯片都已經(jīng)獲得成功.該公司研發(fā)芯片已經(jīng)耗費資金2千萬元,現(xiàn)在準(zhǔn)備投入資金進行生產(chǎn)經(jīng)市場調(diào)查與預(yù)測,生產(chǎn)芯片的毛收入與投入的資金成正比,已知每投入4千萬元,公司獲得毛收入1千萬元;生產(chǎn)芯片的毛收入(千萬元)與投入的資金(千萬元)的函數(shù)關(guān)系為,其圖象如圖所示:

          1)試分別求出生產(chǎn)兩種芯片的毛收入(千萬元)與投入資金(千萬元)的函數(shù)關(guān)系式;

          2)現(xiàn)在公司準(zhǔn)備投入4億元資金同時生產(chǎn)兩種芯片,設(shè)投入千萬元生產(chǎn)芯片,用表示公司所獲利潤,當(dāng)為多少時,可以獲得最大利潤?并求最大利潤.

          (利潤芯片毛收入芯片毛收入-研發(fā)耗費資金)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知二次函數(shù)的圖象是以原點為頂點且過點的拋物線,反比例函數(shù)的圖象(雙曲線)與直線的兩個交點間的距離為8,.

          1)求函數(shù)的表達式;

          2)當(dāng)時,討論函數(shù)的零點個數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,,是經(jīng)過小城的東西方向與南北方向的兩條公路,小城位于小城的東北方向,直線距離.現(xiàn)規(guī)劃經(jīng)過小城修建公路(,分別在上),與,圍成三角形區(qū)域.

          (1)設(shè),求三角形區(qū)域周長的函數(shù)解析式;

          (2)現(xiàn)計劃開發(fā)周長最短的三角形區(qū)域,求該開發(fā)區(qū)域的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知過點的動直線與圓 交于M,N兩點.

          (Ⅰ)設(shè)線段MN的中點為P,求點P的軌跡方程;

          (Ⅱ)若,求直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)在區(qū)間上有最小值1,最大值9.

          1)求實數(shù)ab的值;

          2)設(shè),若不等式在區(qū)間上恒成立,求實數(shù)k的取值范圍;

          3)設(shè)),若函數(shù)有三個零點,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知二次函數(shù).

          1)若的兩個不同的根,是否存在實數(shù),使成立?若存在,求的值;若不存在,請說明理由.

          2)設(shè),函數(shù)已知方程恰有3個不同的根.

          )求的取值范圍;

          )設(shè)分別是這3個根中的最小值與最大值,求的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列{an}中,a1=1,a1+2a2+3a3+…+nan=(nN*

          Ⅰ)證明當(dāng)n≥2時,數(shù)列{nan}是等比數(shù)列,并求數(shù)列{an}的通項an;

          Ⅱ)求數(shù)列{n2an}的前n項和Tn

          Ⅲ)對任意nN*,使得 恒成立,求實數(shù)λ的最小值.

          查看答案和解析>>

          同步練習(xí)冊答案