日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知 a∈R,函數(shù) f(x)=a﹣
          (1)證明:f(x)在(﹣∞,+∞)上單調(diào)遞增;
          (2)若f(x)為奇函數(shù),求:
          ①a的值;
          ②f(x)的值域.

          【答案】
          (1)證明:證法一:設(shè)x1<x2

          ,

          則f(x1)﹣f(x2)=(a﹣ )﹣(a﹣ )= <0.

          ∴f(x1)﹣f(x2)<0,

          ∴f(x1)<f(x2),

          故f(x)在(﹣∞,+∞)上單調(diào)遞增;

          證法二:∵函數(shù) f(x)=a﹣

          ∴f′(x)= ,

          ∵f′(x)>0恒成立,

          故f(x)在(﹣∞,+∞)上單調(diào)遞增


          (2)證明:①若f(x)為奇函數(shù),

          則 f(0)=a﹣ =0,

          解得:a= ,

          ②f(x)=

          ∵2x+1>1,

          ∴0< <1,

          故﹣ <f(x)< ,

          故函數(shù)的值域為:(﹣ ,


          【解析】(1)證法一:設(shè)x1<x2 , 作差比較作差可得f(x1)<f(x2),根據(jù)函數(shù)單調(diào)性的定義,可得:f(x)在(﹣∞,+∞)上單調(diào)遞增;
          證法二:求導(dǎo),根據(jù)f′(x)>0恒成立,可得:f(x)在(﹣∞,+∞)上單調(diào)遞增.(2)①若f(x)為奇函數(shù),則 f(0)=0,解得a的值;
          ②根據(jù)①可得函數(shù)的解析式,進而可得f(x)的值域.
          【考點精析】通過靈活運用函數(shù)的值域和函數(shù)單調(diào)性的判斷方法,掌握求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實上,如果在函數(shù)的值域中存在一個最。ù螅⿺(shù),這個數(shù)就是函數(shù)的最。ù螅┲担虼饲蠛瘮(shù)的最值與值域,其實質(zhì)是相同的;單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大。虎圩鞑畋容^或作商比較即可以解答此題.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】《萊因德紙草書》(Rhind Papyrus)是世界上最古老的數(shù)學(xué)著作之一.書中有一道這樣的題目:把100個面包分給5個人,使每個人所得成等差數(shù)列,且使較大的三份之和的 是較小的兩份之和,問最小一份為( )
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】【選修4-4:坐標系與參數(shù)方程】

          在直角坐標系中圓C的參數(shù)方程為為參數(shù)),以原點O為極點, 軸的非負半軸為極軸建立極坐標系,直線的極坐標方程為

          (1)求圓C的直角坐標方程及其圓心C的直角坐標;

          (2)設(shè)直線與曲線交于兩點,求的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】近年來,空氣質(zhì)量成為人們越來越關(guān)注的話題,空氣質(zhì)量指數(shù)(,簡稱)是定量描述空氣質(zhì)量狀況的指數(shù),空氣質(zhì)量按照大小分為六級, 為優(yōu); 為良; 為輕度污染; 為中度污染; 為重度污染;大于300為嚴重污染.環(huán)保部門記錄了2017年某月哈爾濱市10天的的莖葉圖如下:

          (1)利用該樣本估計該地本月空氣質(zhì)量優(yōu)良()的天數(shù);(按這個月總共30天計算)

          (2)現(xiàn)工作人員從這10天中空氣質(zhì)量為優(yōu)良的日子里隨機抽取2天進行某項研究,求抽取的2天中至少有一天空氣質(zhì)量是優(yōu)的概率;

          (3)將頻率視為概率,從本月中隨機抽取3天,記空氣質(zhì)量優(yōu)良的天數(shù)為,求的概率分布列和數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)橢圓,定義橢圓的“伴隨圓”方程為;若拋物線的焦點與橢圓C的一個短軸端點重合,且橢圓C的離心率為

          1求橢圓C的方程和“伴隨圓”E的方程;

          2過“伴隨圓”E上任意一點P作橢圓C的兩條切線PA,PB,A,B為切點,延長PA與“伴隨圓”E交于點Q,O為坐標原點.

          (i)證明:PA⊥PB

          (ii)若直線OP,OQ的斜率存在,設(shè)其分別為,試判斷是否為定值,若是, 求出該值;若不是,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如下圖,在四棱錐中,底面是邊長為的正方形,平面平面 , 中點,且.

          (Ⅰ)求證: 平面

          (Ⅱ)求證: ;

          (Ⅲ)求與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),曲線在點處的切線與直線垂直(其中為自然對數(shù)的底數(shù)).

          1)求的解析式及單調(diào)遞減區(qū)間;

          2)是否存在常數(shù),使得對于定義域內(nèi)的任意, 恒成立,若存在,求出的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐中,平面,四邊形是直角梯形,.

          (1)求二面角的余弦值;

          (2)設(shè)是棱上一點,的中點,若與平面所成角的正弦值為,求線段的長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】袋中裝有圍棋黑色和白色棋子共7枚,從中任取2枚棋子都是白色的概率為. 現(xiàn)有甲、乙兩人從袋中輪流摸取一枚棋子.甲先摸,乙后取,然后甲再取,……,取后均不放回,直到有一人取到白棋即終止. 每枚棋子在每一次被摸出的機會都是等可能的.表示取棋子終止時所需的取棋子的次數(shù).

          (1)求隨機變量的概率分布列和數(shù)學(xué)期望;

          (2)求甲取到白棋的概率.

          查看答案和解析>>

          同步練習(xí)冊答案