日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,平面四邊形的4個頂點都在球的表面上,為球的直徑,為球面上一點,且平面 ,,點的中點.
          (1) 證明:平面平面;
          (2) 求平面與平面所成銳二面角的余弦值.

          (1)詳見解析;(2)

          解析試題分析:本小題通過立體幾何的相關(guān)知識,具體涉及到直線與直線垂直的判斷、線面的平行關(guān)系的判斷以及二面角的求法等有關(guān)知識,考查考生的空間想象能力、推理論證能力,對學(xué)生的數(shù)形結(jié)合思想的考查也有涉及,本題是一道立體幾何部分的綜合題,屬于中檔難度試題. (1)借助幾何體的性質(zhì),得到,借助線面平行的判定定理得到線面平行,進(jìn)而利用面面平行的判定定理證明平面平面;(2)利用空間向量的思路,建立坐標(biāo)系,明確各點坐標(biāo),求解兩個半平面的法向量,進(jìn)而利用向量的夾角公式求解二面角的平面角.
          試題解析:(1) 證明:,
          平行且等于,即四邊形為平行四邊形,所以.
                        (6分)
          (2) 以為原點,方向為軸,以平面內(nèi)過點且垂直于方向為軸以方向為軸,建立如圖所示坐標(biāo)系.

          ,,,
          ,
          ,,
          可知
          ,
          可知

          因此平面與平面所成銳二面角的余弦值為.                    (12分)
          考點:(1)直線與直線垂直的判斷、線面的平行關(guān)系的判斷;(2)二面角的求法.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,在直三棱柱中,,異面直線所成
          的角為.

          (Ⅰ)求證:
          (Ⅱ)設(shè)的中點,求與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,在幾何體中,平面,是等腰直角三角形,,且,點的中點.

          (Ⅰ)求證:平面
          (Ⅱ)求與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖1,四棱錐中,底面,面是直角梯形,為側(cè)棱上一點.該四棱錐的俯視圖和側(cè)(左)視圖如圖2所示.   
          (Ⅰ)證明:平面;
          (Ⅱ)證明:∥平面
          (Ⅲ)線段上是否存在點,使所成角的余弦值為?若存在,找到所有符合要求的點,并求的長;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,直三棱柱的側(cè)棱長為3,,且,、分別是棱上的動點,且
          (1)證明:無論在何處,總有;
          (2)當(dāng)三棱柱.的體積取得最大值時,求異面直線所成角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖所示,三棱柱A1B1C1—ABC的三視圖中,正(主)視圖和側(cè)(左)視圖是全等的矩形,俯視圖是等腰直角三角形,點M是A1B1的中點.

          (1)求證:B1C∥平面AC1M;
          (2)求證:平面AC1M⊥平面AA1B1B.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,四棱錐F-ABCD的底面ABCD是菱形,其對角線AC=2,BD=,AE、CF都與平面ABCD垂直,AE=1,CF=2.

          (I)求二面角B-AF-D的大;
          (II)求四棱錐E-ABCD與四棱錐F-ABCD公共部分的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。將△ABD沿邊AB折起, 使得△ABD與△ABC成30o的二面角,如圖二,在二面角中.

          (1) 求CD與面ABC所成的角正弦值的大小;
          (2) 對于AD上任意點H,CH是否與面ABD垂直。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          在直角梯形ABCD中,AD//BC,,,如圖(1).把沿翻折,使得平面,如圖(2).

          (Ⅰ)求證:;
          (Ⅱ)求三棱錐的體積;
          (Ⅲ)在線段上是否存在點N,使得?若存在,請求出的值;若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案