【題目】為了解男性家長(zhǎng)和女性家長(zhǎng)對(duì)高中學(xué)生成人禮儀式的接受程度,某中學(xué)團(tuán)委以問(wèn)卷形式調(diào)查了位家長(zhǎng),得到如下統(tǒng)計(jì)表:
男性家長(zhǎng) | 女性家長(zhǎng) | 合計(jì) | |
贊成 | |||
無(wú)所謂 | |||
合計(jì) |
(1)據(jù)此樣本,能否有的把握認(rèn)為“接受程度”與家長(zhǎng)性別有關(guān)?說(shuō)明理由;
(2)學(xué)校決定從男性家長(zhǎng)中按分層抽樣方法選出人參加今年的高中學(xué)生成人禮儀式,并從中選
人交流發(fā)言,求發(fā)言人中至多一人持“贊成”態(tài)度的概率..
參考數(shù)據(jù)
參考公式
【答案】(1)見(jiàn)解析;(2) .
【解析】試題分析: 根據(jù)條件得到
,
,
,
,計(jì)算
的值,對(duì)照臨界值即可得到結(jié)論
根據(jù)分層抽樣原理計(jì)算抽取“贊成”態(tài)度的人數(shù),“無(wú)所謂”態(tài)度的人數(shù),以及對(duì)應(yīng)基本事件總數(shù),再求概率值
解析:(1)由題: ,
,
,
,
∴,所以,沒(méi)有
的把握認(rèn)為“接受程度”與家長(zhǎng)性別有關(guān).
(2)選出的人中持“贊成”態(tài)度的人數(shù)為:
(人)
持“無(wú)所謂”態(tài)度的人數(shù)為: (人)
設(shè)持“贊成”態(tài)度的恩分別為,
;持“無(wú)所謂”態(tài)度的人分別為
,
,
基本事件總數(shù)為: ,
,
,
,
,
,
,
,
共
種.
其中至多一人持“贊成”態(tài)度的有: 種
∴.
(或:其中兩人持“贊同”態(tài)度的人有種,故所求概率
)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市為了改善居民的休閑娛樂(lè)活動(dòng)場(chǎng)所,現(xiàn)有一塊矩形草坪如下圖所示,已知:
米,
米,擬在這塊草坪內(nèi)鋪設(shè)三條小路
、
和
,要求點(diǎn)
是
的中點(diǎn),點(diǎn)
在邊
上,點(diǎn)
在邊
時(shí)上,且
.
(1)設(shè),試求
的周長(zhǎng)
關(guān)于
的函數(shù)解析式,并求出此函數(shù)的定義域;
(2)經(jīng)核算,三條路每米鋪設(shè)費(fèi)用均為元,試問(wèn)如何設(shè)計(jì)才能使鋪路的總費(fèi)用最低?并求出最低總費(fèi)用.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系中,橢圓C的方程為
,以
為極點(diǎn),
軸的非負(fù)半軸為極軸,取相同的長(zhǎng)度單位建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
.
(1)求直線的直角坐標(biāo)方程;
(2)設(shè)為橢圓
上任意一點(diǎn),求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,
,
且
在
上的最大值為
,最小值為
,試求
,
的值;
(2)若,
,且
對(duì)任意
恒成立,求
的取值范圍.(用
來(lái)表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
和直線m:
,且
.
求a的值;
是否存在k的值,使直線m既是曲線
的切線,又是曲線
的切線?如果存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,分別是橢圓
的左、右焦點(diǎn).
(1)若點(diǎn)是第一象限內(nèi)橢圓上的一點(diǎn),
,求點(diǎn)
的坐標(biāo);
(2)設(shè)過(guò)定點(diǎn)的直線
與橢圓交于不同的兩點(diǎn)
,且
為銳角(其中
為坐標(biāo)原點(diǎn)),求直線
的斜率
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列{an} 和等比數(shù)列{bn}滿足a1=b1=1,a2+a4=10,b2b4=a5.
(1)求{an}的通項(xiàng)公式;
(2)求和:b1+b3+b5+…+b2n-1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著互聯(lián)網(wǎng)技術(shù)的快速發(fā)展,人們更加關(guān)注如何高效地獲取有價(jià)值的信息,網(wǎng)絡(luò)知識(shí)付費(fèi)近兩年呈現(xiàn)出爆發(fā)式的增長(zhǎng),為了了解網(wǎng)民對(duì)網(wǎng)絡(luò)知識(shí)付費(fèi)的態(tài)度,某網(wǎng)站隨機(jī)抽查了歲及以上不足
歲的網(wǎng)民共
人,調(diào)查結(jié)果如下:
(1)請(qǐng)完成上面的列聯(lián)表,并判斷在犯錯(cuò)誤的概率不超過(guò)
的前提下,能否認(rèn)為網(wǎng)民對(duì)網(wǎng)絡(luò)知識(shí)付費(fèi)的態(tài)度與年齡有關(guān)?
(2)在上述樣本中用分層抽樣的方法,從支持和反對(duì)網(wǎng)絡(luò)知識(shí)付費(fèi)的兩組網(wǎng)民中抽取名,若在上述
名網(wǎng)民中隨機(jī)選
人,設(shè)這
人中反對(duì)態(tài)度的人數(shù)為隨機(jī)變量
,求
的分布列和數(shù)學(xué)期望.
附: ,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲同學(xué)寫(xiě)出三個(gè)不等式::
,
:
,
:
,然后將
的值告訴了乙、丙、丁三位同學(xué),要求他們各用一句話來(lái)描述,以下是甲、乙、丙、丁四位同學(xué)的描述:
乙:為整數(shù);
丙:是
成立的充分不必要條件;
。是
成立的必要不充分條件;
甲:三位同學(xué)說(shuō)得都對(duì),則的值為__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com