日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 函數(shù)y=x3+1在區(qū)間
           
          上是增函數(shù),函數(shù)f(x)=-x2-2x的遞增區(qū)間為
           
          ,函數(shù)g(x)=log
          12
          (-x2+4x-3)
          的遞減區(qū)間為
           
          分析:對于y=x3+1、f(x)=-x2-2x進(jìn)行求導(dǎo),令導(dǎo)函數(shù)大于0求增區(qū)間;對于函數(shù)g(x)=log
          1
          2
          (-x2+4x-3)
          根據(jù)復(fù)合函數(shù)的同增異減性可得答案.
          解答:解:①∵y=x3+1∴y'=3x2≥0∴原函數(shù)y=x3+1在R上單調(diào)遞增.
          ②∵f(x)=-x2-2x∴f'(x)=-2x-2,令f'(x)=-2x-2>0,∴x<-1
          ∴函數(shù)f(x)=-x2-2x的遞增區(qū)間為:(-∞,-1)
          ③∵g(x)=log
          1
          2
          (-x2+4x-3)
          ,令z=-x2+4x-3
          ∴原函數(shù)等價(jià)于y=log
          1
          2
          z
          ,z=-x2+4x-3,并且y=log
          1
          2
          z
          單調(diào)遞減,z=-x2+4x-3的增區(qū)間(-∞,2)
          根據(jù)復(fù)合函數(shù)的同增異減性可知原函數(shù)的減區(qū)間為:(-∞,2)
          故答案為:R,(-∞,-1),(-∞,2)
          點(diǎn)評:本題主要考查不同函數(shù)單調(diào)區(qū)間的求法.求函數(shù)單調(diào)區(qū)間一般有求導(dǎo)法、圖象法、復(fù)合函數(shù)的同增異減性等.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•海珠區(qū)二模)已知f(x)=xlnx,g(x)=x3+ax2-x+2.
          (Ⅰ)如果函數(shù)g(x)的單調(diào)遞減區(qū)間為(-
          13
          ,1)
          ,求函數(shù)g(x)的解析式;
          (Ⅱ)在(Ⅰ)的條件下,求函數(shù)y=g(x)的圖象在點(diǎn)P(-1,1)處的切線方程;
          (Ⅲ)若不等式2f(x)≤g′(x)+2恒成立,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•昌平區(qū)一模)已知函數(shù)f(x)=-x3+ax2-4(a∈R).
          (Ⅰ)若函數(shù)y=f(x)的圖象在點(diǎn)P(1,f(1))處的切線的傾斜角為
          π4
          ,求f(x)在[-1,1]上的最小值;
          (Ⅱ)若存在x0∈(0,+∞),使f(x0)>0,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2008•海珠區(qū)一模)已知函數(shù)f(x)=x3+3ax-1
          (1)若函數(shù)y=f(x)在x=-1時(shí)有與x軸平行的切線,求f(x)的表達(dá)式;
          (2)設(shè)g(x)=
          13
          [af'(x)-3a2+3],其中f-1(x)是f(x)的導(dǎo)函數(shù),若函數(shù)g(x)的圖象與直線y=x相切,求a的值;
          (3)設(shè)a=-m2,當(dāng)實(shí)數(shù)m在什么范圍內(nèi)變化時(shí),函數(shù)y=f(x)的圖象與直線y=3只有一個(gè)公共點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•靜安區(qū)一模)函數(shù)y=f(x),x∈D,其中D≠∅.若對任意x∈D,f(|x|)=|f(x)|,則稱y=f(x)在D內(nèi)為對等函數(shù).
          (1)指出函數(shù)y=
          x
          ,y=x3,y=2x在其定義域內(nèi)哪些為對等函數(shù);
          (2)試研究對數(shù)函數(shù)y=logax(a>0且a≠1)在其定義域內(nèi)是否是對等函數(shù)?若是,請說明理由;若不是,試給出其定義域的一個(gè)非空子集,使y=logax在所給集合內(nèi)成為對等函數(shù);
          (3)若{0}⊆D,y=f(x)在D內(nèi)為對等函數(shù),試研究y=f(x)(x∈D)的奇偶性.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:湖北省期中題 題型:解答題

          函數(shù)f(x)=xlnx,g(x)=x3+ax2-x+2
          (1)如果函數(shù)g(x)單調(diào)減區(qū)調(diào)為,求函數(shù)g(x)解析式;
          (2)在(1)的條件下,求函數(shù)y=g(x)圖象過點(diǎn)p(1,1)的切線方程;
          (3)若x0∈(0,+∞),使關(guān)于x的不等式2f(x)≥g'(x)+2成立,求實(shí)數(shù)a取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案