日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在四棱錐S-ABCD中,底面ABCD是邊長為1的正方形,SD底面ABCD,SD=2,其中分別是的中點,上的一個動點.

          (1)當點落在什么位置時,∥平面,證明你的結(jié)論;

          (2)求三棱錐的體積.

          【答案】(1)當點的中點時,∥平面證明見解析;(2)

          【解析】

          (1)當點P為SD的中點時,AP平面SMC,證明如下:連接PN,證明PNDC且,推出AMDC且,得到APMN然后證明AP平面SMC.

          (2)求出點N到平面ABCD的距離為h=1,然后求解三棱錐B﹣NMC的體積.

          (1)當點的中點時,∥平面。證明如下:

          由三視圖知該多面體是四棱錐,其底面邊長為的正方形,側(cè)棱底面

          連接,

          分別是的中點,

          ,

          是正方形的邊的中點,

          ,

          ,即四邊形是平行四邊形,

          ,又平面,平面

          ∥平面

          (2)∵點到平面的距離為,∴點到平面的距離為,

          ∵三棱錐的體積滿足:

          .

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為了研究一種新藥的療效,選100名患者隨機分成兩組,每組各50名,一組服藥,另一組不服藥.一段時間后,記錄了兩組患者的生理指標x和y的數(shù)據(jù),并制成如圖,其中“*”表示服藥者,“+”表示未服藥者.(13分)
          (1)從服藥的50名患者中隨機選出一人,求此人指標y的值小于60的概率;
          (2)從圖中A,B,C,D四人中隨機選出兩人,記ξ為選出的兩人中指標x的值大于1.7的人數(shù),求ξ的分布列和數(shù)學(xué)期望E(ξ);
          (3)試判斷這100名患者中服藥者指標y數(shù)據(jù)的方差與未服藥者指標y數(shù)據(jù)的方差的大小.(只需寫出結(jié)論)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐P﹣ABCD中,側(cè)面PAD為等邊三角形且垂直于底面ABCD,AB=BC= AD,∠BAD=∠ABC=90°. (Ⅰ)證明:直線BC∥平面PAD;
          (Ⅱ)若△PAD面積為2 ,求四棱錐P﹣ABCD的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)有下面四個命題
          p1:若復(fù)數(shù)z滿足 ∈R,則z∈R;
          p2:若復(fù)數(shù)z滿足z2∈R,則z∈R;
          p3:若復(fù)數(shù)z1 , z2滿足z1z2∈R,則z1=
          p4:若復(fù)數(shù)z∈R,則 ∈R.
          其中的真命題為(  )
          A.p1 , p3
          B.p1 , p4
          C.p2 , p3
          D.p2 , p4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知正四棱錐的所有棱長都相等,的中點,則,所成角的正弦值為(

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】交通指數(shù)是交通擁堵指數(shù)的簡稱,是綜合反映道路網(wǎng)暢通或擁堵的概念,記交通指數(shù)為T.其

          范圍為[0,10],分別有五個級別:T[0,2)暢通;T[2,4)基本暢通; T[4,6)輕度擁堵; T[6,8)中度擁堵;T[8,10]嚴重擁堵晚高峰時段(T2),從某市交通指揮中心選取了市區(qū)20個交通路段,依據(jù)其交通指數(shù)數(shù)據(jù)繪制的部分直方圖如圖所示.

          (1)請補全直方圖,并求出輕度擁堵、中度擁堵、嚴重擁堵路段各有多少個?

          (2)用分層抽樣的方法從交通指數(shù)在[4,6),[6,8),[8,l0]的路段中共抽取6個路段,求依次抽取的三個級別路段的個數(shù);

          (3)(2)中抽出的6個路段中任取2個,求至少一個路段為輕度擁堵的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓C: + =1(a>b>0),四點P1(1,1),P2(0,1),P3(﹣1, ),P4(1, )中恰有三點在橢圓C上.(12分)
          (1)求C的方程;
          (2)設(shè)直線l不經(jīng)過P2點且與C相交于A,B兩點.若直線P2A與直線P2B的斜率的和為﹣1,證明:l過定點.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知sinB+sinA(sinC﹣cosC)=0,a=2,c= ,則C=( 。
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】(1)求不等式的解集.

          (2)已知.若對于任意的,不等式恒成立,求的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案