日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 奇函數(shù),且當(dāng)x>0時(shí),f(x)有最小值,又f(1)=3.
          (1)求f(x)的表達(dá)式;
          (2)設(shè)g(x)=xf(x),正數(shù)數(shù)列{an}中,a1=1,an+12=g(an),求數(shù)列{an}的通項(xiàng)公式;
          (3)設(shè),數(shù)列{bn}中b1=m(m>0),bn+1=h(bn)(n∈N*).是否存在常數(shù)m使bn•bn+1>0對(duì)任意n∈N*恒成立.若存在,求m的取值范圍,若不存在,說明理由.
          【答案】分析:(1)根據(jù)f(1)=3,以及f(x)為奇函數(shù)可求出b的值,然后根據(jù)當(dāng)x>0時(shí),f(x)有最小值,可求出c的值,從而求出函數(shù)的解析式;
          (2)根據(jù)an+12=g(an)可證得{an2+1}為等比數(shù)列,其首項(xiàng)為a12+1=2,公比為2,從而求出數(shù)列{an}的通項(xiàng)公式;
          (3)假設(shè)存在正實(shí)數(shù)m,對(duì)任意n∈N*,使bn•bn+1>0恒成立,然后根據(jù)放縮法可得,取n>1+b12,即n>m2+1時(shí),有bn<0與bn>0矛盾,從而得到結(jié)論.
          解答:解(1);
          ∵是奇函數(shù);

          又可知和不能同時(shí)為0
          故b=0
          a+b+1=3c+3d,


          當(dāng)x>0時(shí),f(x)有最大值


          (2)∵g(x)=2x2+1
          ∴an+12=2an2+1⇒an+12+1=2(an2+1)
          ∴{an2+1}為等比數(shù)列,其首項(xiàng)為a12+1=2,公比為2
          ∴an2+1=(a12+1)•2n-1=2n
          (3)由題

          假設(shè)存在正實(shí)數(shù)m,對(duì)任意n∈N*,使bn•bn+1>0恒成立.
          ∵b1=m>0
          ∴bn>0恒成立.




          取n>1+b12,即n>m2+1時(shí),有bn<0與bn>0矛盾.
          因此,不存在正實(shí)數(shù)m,使bn•bn+1>0對(duì)n∈N*恒成立.
          點(diǎn)評(píng):本題主要考查了函數(shù)的解析式,以及函數(shù)的奇偶性和恒成立問題,同時(shí)考查了數(shù)列的綜合運(yùn)用,屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)y=f(x)是定義在實(shí)數(shù)集R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)+x•f′(x)>0(其中f′(x)是f(x)的導(dǎo)函數(shù))恒成立.若a=(ln
          1
          e2
          )•f(ln
          1
          e2
          )
          ,b=
          2
          •f(
          2
          )
          ,c=lg5•f(lg5),則a,b,c的大小關(guān)系是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)的定義域?yàn)镈,如果存在正實(shí)數(shù)k,使對(duì)任意x∈D,都有x+k∈D,且f(x+k)>f(x)恒成立,則稱函數(shù)f(x)為D上的“k型增函數(shù)”.已知f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=|x-a|-2a,若f(x)為R上的“2013型增函數(shù)”,則實(shí)數(shù)a的取值范圍是
          (-∞,
          671
          2
          )
          (-∞,
          671
          2
          )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=2+lnx.
          (1)求f(x)在R上的解析式;
          (2)求滿足f(x)=0的x值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)f(x)是R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)+xf′(x)>0,若f(3)=5,且當(dāng)x∈(-∞,-a)∪(a,+∞),a>0時(shí),不等式|f(x)|>
          15|x|
          恒成立,則a的取值范圍是
          a≥3
          a≥3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)y=f(x)是定義在R上的奇函數(shù),且當(dāng)x<0時(shí),f(x)=1+2x,
          (1)求其在R上的解析式;
          (2)畫出函數(shù)f(x)的圖象,并根據(jù)圖象寫出函數(shù)的單調(diào)區(qū)間.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案