日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】(卷號)2040818101747712

          (題號)2050752239689728

          (題文)

          在平面直角坐標系中,以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系.已知直線的參數(shù)方程為為參數(shù)),曲線C的極坐標方程為.

          (1)求曲線的直角坐標方程和直線的普通方程;

          (2)設(shè)直線與曲線交于兩點,點,求的值.

          【答案】(1); (2).

          【解析】

          1)由代入曲線C的極坐標方程,即可求出普通方程,消去直線l的參數(shù)方程中的未知量t,即可得到直線的普通方程;(2)因為直線和曲線C有兩個交點,所以根據(jù)直線的參數(shù)方程,建立一元二次方程根與系數(shù),得出結(jié)果。

          (1)由得曲線的直角坐標方程為

          直線的普通方程為.

          (2)直線的參數(shù)方程的標準形式為

          代入,整理得:,

          設(shè)所對應(yīng)的參數(shù)為,則,

          所以.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐P-ABCD中,底面ABCD為菱形,底面ABCD,,E、F分別是PCAB的中點.

          1)證明:平面PAD;

          2)若,求PD與平面PBC所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,△ABC為正三角形,且BCCD2CDBC,將△ABC沿BC翻折.

          1)當(dāng)AD2時,求證:平面ABD⊥平面BCD

          2)若點A的射影在△BCD內(nèi),且直線AB與平面ACD所成角為60°,求AD的長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】甲、乙兩家物流公司都需要進行貨物中轉(zhuǎn),由于業(yè)務(wù)量擴大,現(xiàn)向社會招聘貨車司機,其日工資方案如下:甲公司,底薪80元,司機毎中轉(zhuǎn)一車貨物另計4元:乙公司無底薪,中轉(zhuǎn)40車貨物以內(nèi)(含40車)的部分司機每車計6元,超出40車的部分司機每車計7元.假設(shè)同一物流公司的司機一填中轉(zhuǎn)車數(shù)相同,現(xiàn)從這兩家公司各隨機選取一名貨車司機,并分別記錄其50天的中轉(zhuǎn)車數(shù),得到如下頻數(shù)表:

          甲公司送餐員送餐單數(shù)頻數(shù)表

          送餐單數(shù)

          38

          39

          40

          41

          42

          天數(shù)

          10

          15

          10

          10

          5

          乙公司送餐員送餐單數(shù)頻數(shù)表

          送餐單數(shù)

          38

          39

          40

          41

          42

          天數(shù)

          5

          10

          10

          20

          5

          1)現(xiàn)從記錄甲公司的50天貨物中轉(zhuǎn)車數(shù)中隨機抽取3天的中轉(zhuǎn)車數(shù),求這3天中轉(zhuǎn)車數(shù)都不小于40的概率;

          2)若將頻率視為概率,回答下列兩個問題:

          ①記乙公司貨車司機日工資為X(單位:元),求X的分布列和數(shù)學(xué)期望EX);

          ②小王打算到甲、乙兩家物流公司中的一家應(yīng)聘,如果僅從日工資的角度考慮,請利用所學(xué)的統(tǒng)計學(xué)知識為小王作出選擇,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某校為了了解學(xué)生對消防知識的了解情況,從高一年級和高二年級各選取100名同學(xué)進行消防知識競賽.下圖(1)和圖(2)分別是對高一年級和高二年級參加競賽的學(xué)生成績按分組,得到的頻率分布直方圖.

          1)請計算高一年級和高二年級成績小于60分的人數(shù);

          2)完成下面列聯(lián)表,并回答:有多大的把握可以認為“學(xué)生所在的年級與消防常識的了解存在相關(guān)性”?

          成績小于60分人數(shù)

          成績不小于60分人數(shù)

          合計

          高一

          高二

          合計

          附:臨界值表及參考公式:.

          0.15

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質(zhì)量分別在,,(單位:克)中,經(jīng)統(tǒng)計得頻率分布直方圖如圖所示.

          (1) 經(jīng)計算估計這組數(shù)據(jù)的中位數(shù);

          (2)現(xiàn)按分層抽樣從質(zhì)量為,的芒果中隨機抽取個,再從這個中隨機抽取個,求這個芒果中恰有個在內(nèi)的概率.

          (3)某經(jīng)銷商來收購芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計總體,該種植園中還未摘下的芒果大約還有個,經(jīng)銷商提出如下兩種收購方案:

          A:所以芒果以/千克收購;

          B:對質(zhì)量低于克的芒果以/個收購,高于或等于克的以/個收購.

          通過計算確定種植園選擇哪種方案獲利更多?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的離心率,過焦點且垂直于x軸的直線被橢圓截得的線段長為3

          (1)求橢圓的方程;

          (2)已知P為直角坐標平面內(nèi)一定點,動直線l:與橢圓交于A、B兩點,當(dāng)直線PA與直線PB的斜率均存在時,若直線PA與PB的斜率之和為與t無關(guān)的常數(shù),求出所有滿足條件的定點P的坐標.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某蛋糕店制作并銷售一款蛋糕,制作一個蛋糕成本3元,且以8元的價格出售,若當(dāng)天賣不完,剩下的則無償捐獻給飼料加工廠。根據(jù)以往100天的資料統(tǒng)計,得到如下需求量表。該蛋糕店一天制作了這款蛋糕個,以(單位:個,)表示當(dāng)天的市場需求量,(單位:元)表示當(dāng)天出售這款蛋糕獲得的利潤.

          需求量/個

          天數(shù)

          15

          25

          30

          20

          10

          (1)當(dāng)時,若時獲得的利潤為,時獲得的利潤為,試比較的大;

          (2)當(dāng)時,根據(jù)上表,從利潤不少于570元的天數(shù)中,按需求量分層抽樣抽取6天.

          (i)求此時利潤關(guān)于市場需求量的函數(shù)解析式,并求這6天中利潤為650元的天數(shù);

          (ii)再從這6天中抽取3天做進一步分析,設(shè)這3天中利潤為650元的天數(shù)為,求隨機變量的分布列及數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】中國大學(xué)先修課程,是在高中開設(shè)的具有大學(xué)水平的課程,旨在讓學(xué)有余力的高中生早接受大學(xué)思維方式、學(xué)習(xí)方法的訓(xùn)練,為大學(xué)學(xué)習(xí)乃至未來的職業(yè)生涯做好準備.某高中開設(shè)大學(xué)先修課程已有兩年,兩年共招收學(xué)生2000人,其中有300人參與學(xué)習(xí)先修課程,兩年全校共有優(yōu)等生200人,學(xué)習(xí)先修課程的優(yōu)等生有60人.這兩年學(xué)習(xí)先修課程的學(xué)生都參加了考試,并且都參加了某高校的自主招生考試(滿分100分),結(jié)果如下表所示:

          分數(shù)

          人數(shù)

          20

          55

          105

          70

          50

          參加自主招生獲得通過的概率

          0.9

          0.8

          0.6

          0.5

          0.4

          (1)填寫列聯(lián)表,并畫出列聯(lián)表的等高條形圖,并通過圖形判斷學(xué)習(xí)先修課程與優(yōu)等生是否有關(guān)系,根據(jù)列聯(lián)表的獨立性檢驗,能否在犯錯誤的概率不超過0.01的前提下認為學(xué)習(xí)先修課程與優(yōu)等生有關(guān)系?

          優(yōu)等生

          非優(yōu)等生

          總計

          學(xué)習(xí)大學(xué)先修課程

          沒有學(xué)習(xí)大學(xué)先修課程

          總計

          (2)已知今年有150名學(xué)生報名學(xué)習(xí)大學(xué)先修課程,以前兩年參加大學(xué)先修課程學(xué)習(xí)成績的頻率作為今年參加大學(xué)先修課程學(xué)習(xí)成績的概率.

          ①在今年參與大學(xué)先修課程的學(xué)生中任取一人,求他獲得某高校自主招生通過的概率;

          ②設(shè)今年全校參加大學(xué)先修課程的學(xué)生獲得某高校自主招生通過的人數(shù)為,求.

          參考數(shù)據(jù):

          0.15

          0.10

          0.05

          0.025

          0.010

          0.005

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          參考公式:,其中.

          查看答案和解析>>

          同步練習(xí)冊答案