日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知實(shí)數(shù)x,y滿足 ,若目標(biāo)函數(shù)z=﹣mx+y的最大值為﹣2m+10,最小值為﹣2m﹣2,則實(shí)數(shù)m的取值范圍是(
          A.[﹣1,2]
          B.[﹣2,1]
          C.[2,3]
          D.[﹣1,3]

          【答案】A
          【解析】解:作出不等式組對應(yīng)的平面區(qū)域如圖:(陰影部分ABC). 由目標(biāo)函數(shù)z=﹣mx+y得y=mx+z,
          則直線的截距最大,z最大,直線的截距最小,z最小.
          ∵目標(biāo)函數(shù)z=﹣mx+y的最大值為﹣2m+10,最小值為﹣2m﹣2,
          ∴當(dāng)目標(biāo)函數(shù)經(jīng)過點(diǎn)(2,10)時(shí),取得最大,
          當(dāng)經(jīng)過點(diǎn)(2,﹣2)時(shí),取得最小值,
          ∴目標(biāo)函數(shù)z=﹣mx+y的目標(biāo)函數(shù)的斜率m滿足比x+y=0的斜率大,比2x﹣y+6=0的斜率小,
          即﹣1≤m≤2,
          故選:A.

          作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,由z=﹣mx+y的最大值為﹣2m+10,即當(dāng)目標(biāo)函數(shù)經(jīng)過點(diǎn)(2,10)時(shí),取得最大,當(dāng)經(jīng)過點(diǎn)(2,﹣2)時(shí),取得最小值,利用數(shù)形結(jié)合確定m的取值范圍.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知點(diǎn) ,點(diǎn)P是圓 上的任意一點(diǎn),設(shè)Q為該圓的圓心,并且線段PA的垂直平分線與直線PQ交于點(diǎn)E.
          (1)求點(diǎn)E的軌跡方程;
          (2)已知M,N兩點(diǎn)的坐標(biāo)分別為(﹣2,0),(2,0),點(diǎn)T是直線x=4上的一個(gè)動(dòng)點(diǎn),且直線TM,TN分別交(1)中點(diǎn)E的軌跡于C,D兩點(diǎn)(M,N,C,D四點(diǎn)互不相同),證明:直線CD恒過一定點(diǎn),并求出該定點(diǎn)坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知各項(xiàng)都為正數(shù)的數(shù)列{an}滿足a1=1,an2﹣(2an1﹣1)an﹣2an1=0(n≥2,n∈N*),數(shù)列{bn}滿足b1=1,b1+ b2+ b3+…+ bn=bn+1﹣1(n∈N*
          (Ⅰ)求{an},{bn}的通項(xiàng)公式;
          (Ⅱ)求數(shù)列{anbn}的前n項(xiàng)和為Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱柱中, 平面 , , , 的中點(diǎn).

          (Ⅰ)求四棱錐的體積;

          (Ⅱ)設(shè)點(diǎn)在線段上,且直線與平面所成角的正弦值為,求線段的長度;

          判斷線段上是否存在一點(diǎn),使得?(結(jié)論不要求證明)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示的幾何體,關(guān)于其結(jié)構(gòu)特征,下列說法不正確的是

          A. 該幾何體是由兩個(gè)同底的四棱錐組成的幾何體

          B. 該幾何體有12條棱、6個(gè)頂點(diǎn)

          C. 該幾何體有8個(gè)面,并且各面均為三角形

          D. 該幾何體有9個(gè)面,其中一個(gè)面是四邊形,其余均為三角形

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)m, n是兩條不同的直線,是三個(gè)不同的平面, 給出下列四個(gè)命題:

          m⊥α,n∥α,m⊥n;; α∥β, β∥r, m⊥α,m⊥r;

          m∥α,n∥α,m∥n;; α⊥r, β⊥r,α∥β

          其中正確命題的序號是 ( )

          A. B. ②③ C. ③④ D. ①

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓、圓均滿足圓心在直線上,過點(diǎn),且與直線l2:x=-1相切.

          1)當(dāng)時(shí),求圓,圓的標(biāo)準(zhǔn)方程;

          2)直線l2與圓、圓分別相切于A,B兩點(diǎn),求的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)= sinωx﹣ cosωx(ω>0),將函數(shù)y=|f(x)|的圖象向左平移 個(gè)單位長度后關(guān)于y軸對稱,則當(dāng)ω取最小值時(shí),g(x)=cos(ωx+ )的單調(diào)遞減區(qū)間為(
          A.[﹣ + , + ](k∈Z)
          B.[﹣ + , + ](k∈Z)
          C.[﹣ + + ](k∈Z)
          D.[﹣ + , + ](k∈Z)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某旅游城市為向游客介紹本地的氣溫情況,繪制了一年中各月平均最高氣溫和平均最低氣溫的雷達(dá)圖. 圖中A點(diǎn)表示十月的平均最高氣溫約為,B點(diǎn)表示四月的平均最低氣溫約為. 下面敘述不正確的是 ( )

          A. 各月的平均最低氣溫都在以上

          B. 七月的平均溫差比一月的平均溫差大

          C. 三月和十一月的平均最高氣溫基本相同

          D. 平均最高氣溫高于的月份有5個(gè)

          查看答案和解析>>

          同步練習(xí)冊答案