【題目】設(shè)橢圓的離心率
,圓
與直線
相切,
為坐標(biāo)原點.
(1)求橢圓的方程;
(2)過點任作一直線
交橢圓
于
兩點,記
,若在線段
上取一點
,使得
,試判斷當(dāng)直線
運動時,點
是否在某一定直一上運動?若是,請求出該定直線的方程;若不是,請說明理由.
【答案】(1);(2)點
在定直線
上.
【解析】
試題分析:(1)由離心率,及圓心與直線相切,可得關(guān)于的兩個關(guān)系式,解得
值,可得橢圓的方程;(2)由題可設(shè)直線方程
與橢圓方程聯(lián)立,消去
利用根與系數(shù)的關(guān)系和向量的坐標(biāo)運算,可得
值,設(shè)出
點坐標(biāo), 由
,可得
點橫坐標(biāo)為
.
試題解析:
(1)由,∴
,∴
,又
,
解得,所以橢圓
的方程為
.
(2)直線的斜率必存在,設(shè)其直線方程為
,
并設(shè),
,聯(lián)立方程
,
消去得
,則
,
,
由,得
,故
.
設(shè)點的坐標(biāo)為
,則由
,得
,
解得
又,
,從而
,
故點在定直線
上.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項為和Sn,點(n,)在直線y=
x+
上.?dāng)?shù)列{bn}滿足bn+2-2bn+1+bn=0(nN*),且b3=11,前9項和為153.
(1)求數(shù)列{an},{bn}的通項公式;
(2)求數(shù)列的前
項和
(3)設(shè)nN*,f(n)=問是否存在mN*,使得f(m+15)=5f(m)成立?若存在,求出m的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一盒中裝有除顏色外其余均相同的12個小球,從中隨機取出1個球,取出紅球的概率為,取出黑球的概率為
,取出白球的概率為
,取出綠球的概率為
.求:
(1)取出的1個球是紅球或黑球的概率;
(2)取出的1個球是紅球或黑球或白球的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圓臺的底面內(nèi)的任意一條直徑與另一個底面的位置關(guān)系是 ( )
A.平行B.相交C.在平面內(nèi)D.不確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人練習(xí)罰球,每人練習(xí)6組,每組罰球20個,命中個數(shù)莖葉圖如下:
(1)求甲命中個數(shù)的中位數(shù)和乙命中個數(shù)的眾數(shù);
(2)通過計算,比較甲乙兩人的罰球水平.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方形的邊長為1,如圖所示:
(1)在正方形內(nèi)任取一點,求事件“
”的概率;
(2)用芝麻顆粒將正方形均勻鋪滿,經(jīng)清點,發(fā)現(xiàn)芝麻一共56粒,有44粒落在扇形內(nèi),請據(jù)此估計圓周率
的近似值(精確到0.001).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個焦點為
,
,離心率為
,點
,
在橢圓上,
在線段
上,且
的周長等于
.
(1)求橢圓的標(biāo)準方程;
(2)過圓上任意一點
作橢圓
的兩條切線
和
與圓
交于點
,
,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(
為自然對數(shù)的底數(shù)).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時,若
對任意的
恒成立,求實數(shù)
的值;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果y=f(x)的定義域為R,對于定義域內(nèi)的任意x,存在實數(shù)a使得f(x+a)=f(﹣x)成立,則稱此函數(shù)具有“P(a)性質(zhì)”.給出下列命題:
①函數(shù)y=sinx具有“P(a)性質(zhì)”;
②若奇函數(shù)y=f(x)具有“P(2)性質(zhì)”,且f(1)=1,則f(2015)=1;
③若函數(shù)y=f(x)具有“P(4)性質(zhì)”,圖象關(guān)于點(1,0)成中心對稱,且在(﹣1,0)上單調(diào)遞減,則y=f(x)在(﹣2,﹣1)上單調(diào)遞減,在(1,2)上單調(diào)遞增;
④若不恒為零的函數(shù)y=f(x)同時具有“P(0)性質(zhì)”和“P(3)性質(zhì)”,函數(shù)y=f(x)是周期函數(shù).
其中正確的是 (寫出所有正確命題的編號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com